Напряжение нити. Как рассчитать силу натяжения в физике


В этой задаче необходимо найти отношение силы натяжения к

Рис. 3. Решение задачи 1 ()

Растянутая нить в этой системе действует на брусок 2, заставляя его двигаться вперед, но она также действует и на брусок 1, пытаясь препятствовать его движению. Эти две силы натяжения равны по величине, и нам как раз необходимо найти эту силу натяжения. В таких задачах необходимо упростить решение следующим образом: считаем, что сила является единственной внешней силой, которая заставляет двигаться систему трех одинаковых брусков, и ускорение остается неизменным, то есть сила заставляет двигаться все три бруска с одинаковым ускорением. Тогда натяжение всегда двигает только один брусок и будет равно mа по второму закону Ньютона. будет равно удвоенному произведению массы на ускорение, так как третий брусок находится на втором и нить натяжения должна уже двигать два бруска. В таком случае отношение к будет равно 2. Правильный ответ - первый.

Два тела массой и , связанные невесомой нерастяжимой нитью, могут без трения скользить по гладкой горизонтальной поверхности под действием постоянной силы (Рис. 4). Чему равно отношение сил натяжения нити в случаях а и б?

Выбор ответа: 1. 2/3; 2. 1; 3. 3/2; 4. 9/4.

Рис. 4. Иллюстрация к задаче 2 ()

Рис. 5. Решение задачи 2 ()

На бруски действует одна и та же сила, только в разных направлениях, поэтому ускорение в случае «а» и случае «б» будет одним и тем же, так как одна и та же сила вызывает ускорение двух масс. Но в случае «а» эта сила натяжения заставляет двигаться еще и брусок 2, в случае «б» это брусок 1. Тогда отношение этих сил будет равно отношению их масс и мы получим ответ - 1,5. Это третий ответ.

На столе лежит брусок массой 1 кг, к которому привязана нить, перекинутая через неподвижный блок. Ко второму концу нити подвешен груз массой 0,5 кг (Рис. 6). Определить ускорение, с которым движется брусок, если коэффициент трения бруска о стол составляет 0,35.

Рис. 6. Иллюстрация к задаче 3 ()

Записываем краткое условие задачи:

Рис. 7. Решение задачи 3 ()

Необходимо помнить, что силы натяжения и как векторы разные, но величины этих сил одинаковы и равны Точно также у нас будут одинаковы и ускорения этих тел, так как они связаны нерастяжимой нитью, хотя направлены они в разные стороны: - горизонтально, - вертикально. Соответственно, и оси для каждого из тел выбираем свои. Запишем уравнения второго закона Ньютона для каждого из этих тел, при сложении внутренние силы натяжения сократятся, и получим обычное уравнение, подставив в него данные, получим, что ускорение равно .

Для решения таких задач можно пользоваться методом, который использовался в прошлом веке: движущей силой в данном случае является результирующая внешних сил, приложенных к телу. Заставляет двигаться эту систему сила тяжести второго тела, но мешает движению сила трения бруска о стол, в этом случае:

Так как движутся оба тела, то движущая масса будет равна сумме масс , тогда ускорение будет равно отношению движущей силы на движущую массу Так можно сразу прийти к ответу.

В вершине двух наклонных плоскостей, составляющих с горизонтом углы и , закреплен блок. По поверхности плоскостей при коэффициенте трения 0,2 движутся бруски кг и , связанные нитью, перекинутой через блок (Рис. 8). Найти силу давления на ось блока.

Рис. 8. Иллюстрация к задаче 4 ()

Выполним краткую запись условия задачи и поясняющий чертеж (рис. 9):

Рис. 9. Решение задачи 4 ()

Мы помним, что если одна плоскость составляет угол в 60 0 с горизонтом, а вторая плоскость - 30 0 с горизонтом, то угол при вершине будет 90 0 , это обычный прямоугольный треугольник. Через блок перекинута нить, к которой подвешены бруски, они тянут вниз с одной и той же силой, и действие сил натяжения F н1 и F н2 приводит к тому, что на блок действует их результирующая сила. Но между собой эти силы натяжения будут равны, составляют они между собой прямой угол, поэтому при сложении этих сил получается квадрат вместо обычного параллелограмма. Искомая сила F д является диагональю квадрата. Мы видим, что для результата нам необходимо найти силу натяжения нити. Проведем анализ: в какую сторону движется система из двух связанных брусков? Более массивный брусок, естественно, перетянет более легкий, брусок 1 будет соскальзывать вниз, а брусок 2 будет двигаться наверх по склону, тогда уравнение второго закона Ньютона для каждого из брусков будет выглядеть:

Решение системы уравнений для связанных тел выполняется методом сложения, далее преобразовываем и находим ускорение:

Это значение ускорения необходимо подставить в формулу для силы натяжения и найти силу давления на ось блока:

Мы выяснили, что сила давления на ось блока приблизительно равна 16 Н.

Мы рассмотрели различные способы решения задач, которые многим из вас пригодятся в дальнейшем, чтобы понять принципы устройства и работы тех машин и механизмов, с которыми придется иметь дело на производстве, в армии, в быту.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. - М.: Просвещение, 1990.

Домашнее задание

  1. Каким законом мы пользуемся при составлении уравнений?
  2. Какие величины одинаковы у тел, связанных нерастяжимой нитью?
  1. Интернет-портал Bambookes.ru ( ).
  2. Интернет-портал 10klass.ru ().
  3. Интернет-портал Festival.1september.ru ().

Рассмотрим бесконечную нить, несущую заряд, равномерно распределённый по её длине. Заряд, сосредоточенный на бесконечно нити, конечно, тоже бесконечен, и поэтому он не может служить количественной характеристикой степени заряженности нити. В качестве такой характеристики принимается «линейная плотность заряда ». Эта величина равна заряду, распределённому на отрезке нити единичной длины:

Выясним, какова напряженность поля, создаваемого заряженной нитью на расстоянии а от неё (рис. 1.12).

Рис. 1.12.

Для вычисления напряжённости вновь воспользуемся принципом суперпозиции электрических полей и законом Кулона. Выберем на нити элементарный участок dl .На этом участке сосредоточен заряд dq = tdl , который можно считать точечным. В точке А такой заряд создаёт поле (см. 1.3)

Исходя из симметрии задачи, можно заключить, что искомый вектор напряжённости поля будет направлен по линии, перпендикулярной нити, то есть вдоль оси х . Поэтому сложение векторов напряжённости, можно заменить сложением их проекцией на это направление.

(1.7)

Рис. (1.12 b) позволяет сделать следующие заключения:

Таким образом

. (1.9)

Используя (1.8) и (1.9) в уравнении (1.7), получим

Теперь для решения задачи осталось проинтегрировать (1.10) по всей длине нити. Это означает, что угол a будет меняться от до .

В этой задаче поле обладает цилиндрической симметрией. Напряжённость поля прямо пропорциональна линейной плотности заряда на нити t и обратно пропорциональна расстоянию а от нити до той точки, где измеряется напряжённость.

Лекция 2 «Теорема Гаусса для электрического поля»

План лекции

Поток вектора напряженности электрического поля.

Теорема Гаусса для электрического поля.

Применение теоремы Гаусса для расчёта электрических полей.

Поле бесконечной заряженной нити.

Поле бесконечной заряженной плоскости. Поле плоского конденсатора.

Поле сферического конденсатора.

Первую лекцию мы закончили расчётом напряжённости полей электрического диполя и бесконечно заряженной нити. В обоих случаях использовался принцип суперпозиции электрических полей. Теперь обратимся ещё к одному методу вычисления напряжённости, основанному на теореме Гаусса для электрического поля. В этой теореме речь идёт о потоке вектора напряжённости через произвольную замкнутую поверхность. Поэтому прежде чем преступить к формулировке и доказательству теоремы, обсудим понятие «поток вектора».

Поток вектора напряжённости электрического поля

Выделим в однородном электрическом поле плоскую поверхность (рис. 2.1.). Эта поверхность - вектор, численно равный площади поверхности DS и направленный перпендикулярно поверхности

Рис. 2.1.

Но единичный нормальный вектор может быть направлен как в одну, так и в другую сторону от поверхности (рис. 2.2.). Произвольно выберем положительное направление нормали так, как это показано на рис. 2.1. По определению потоком вектора напряжённости электрического поля через выделенную поверхность называется скалярное произведение этих двух векторов:

Рис. 2.2.

Если поле в общем случае неоднородно, а поверхность S , через которую следует вычислить поток, не плоская, то эту поверхность делят на элементарные участки , в пределах которых напряжённость можно считать неизменённой, а сами участки - плоскими (рис. 2.3.) Поток вектора напряжённости через такой элементарный участок вычисляется по определению потока

Здесь E n = E ∙ cosa - проекция вектора напряжённости на направление нормали . Полный поток через всю поверхность S найдём, проинтегрировав (2.3) по всей поверхности

(2.4)

Рис. 2.3.

Теперь представим себе замкнутую поверхность в электрическом поле. Для отыскания потока вектора напряжённости через подобную поверхность проделаем следующие операции (рис. 2.4.):

Разделим поверхность на участки . Важно отметить при этом, что в случае замкнутой поверхности положительной считается только «внешняя» нормаль .

Вычислим поток на каждом элементарном участке :

Обратите внимание на то, что вектор «вытекающий» из замкнутой поверхности создаёт положительный поток, а «втекающий» - отрицательный.

Для вычисления полного потока вектора напряжённости через всю замкнутую поверхность, все эти потоки нужно алгебраически сложить, то есть уравнение (2.3) проинтегрировать по замкнутой поверхности S

3.10 напряжение: Отношение растягивающего усилия к площади поперечного сечения звена при его номинальных размерах. Источник: ГОСТ 30188 97: Цепи грузоподъемные калиброванные высокопрочные. Технические условия …

напряжение сдвига - 2.1.5 напряжение сдвига: Отношение движущей силы к единице площади потока жидкости. Для ротационного вискозиметра поверхность ротора является площадью сдвига. Крутящий момент, приложенный к ротору, Тr, Н×м, вычисляют по формуле Тr = 9,81m(R0 +… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 52726-2007: Разъединители и заземлители переменного тока на напряжение свыше 1 кВ и приводы к ним. Общие технические условия - Терминология ГОСТ Р 52726 2007: Разъединители и заземлители переменного тока на напряжение свыше 1 кВ и приводы к ним. Общие технические условия оригинал документа: 3.1 IP код: Система кодирования, характеризующая степени защиты, обеспечиваемые… … Словарь-справочник терминов нормативно-технической документации

Виллем Эйнтховен - (нидерл. Willem Einthoven; 21 мая 1860, Семаранг 28 сентября 1927, Лейден) нидерландский физиолог, основоположник электрокардиографии. Сконструировал в 1903 году прибор для регистрации электрической активности сердца, впервые в 1906 году… … Википедия

Эйнтховен Виллем

Эйнтховен В. - Виллем Эйнтховен Виллем Эйнтховен (нидерл. Willem Einthoven; 21 мая 1860, Семаранг 28 сентября 1927, Лейден) нидерландский физиолог, основоположник электрокардиографии. Сконструировал в 1903 году прибор для регистрации электрической активности… … Википедия

галета - I. ГАЛЕТА I ы, ж. galette f. 1. кулин. Галет. Род теста для хлебеннаго, которое пекут в печи. Сл. пов. 1 334. || Большие сухие лепешки, приготовляемые чаще всего из пшеничной муки для морских плаваний, для продовольствия армии во время похода и в … Исторический словарь галлицизмов русского языка

Лампа накаливания - общего назначения (230 В, 60 Вт, 720 лм, цоколь E27, габаритная высота ок. 110 мм Лампа накаливания электрический источник св … Википедия

Электрические измерительные аппараты - Э. измерительными аппаратами называют приборы и приспособления, служащие для измерения Э., а также и магнитных величин. Большая часть измерений сводится к определению силы тока, напряжения (разности потенциалов) и количества электричества.… …

Электрическое освещение - § 1. Законы излучения. § 2. Тело, накаливаемое электрическим током. § 3. Угольная лампа накаливания. § 4. Изготовление ламп накаливания. § 5. История угольной лампочки накаливания. § 6. Лампы Нернста и Ауэра. § 7. Вольтова дуга постоянного тока.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

В механике под нитью понимается материальная система одного измерения, которая под действием приложенных сил может принять форму любой геометрической линии. Нить, не оказывающая сопротивления изгибу и кручению, называется идеальной или абсолютно гибпой нитью. Идеальная нить может быть растяжимой или нерастяжимой (крайняя абстракция). В дальнейшем, при отсутствии специального указания, под термином «гибкая нить» или просто «нить» будем понимать идеальную нерастяжимую или растяжимую нить.

При расчете нити на прочность, вычислении поверхностных сил, действующих на нить, а также в ряде других случаев необходимо учитывать поперечные размеры нити. Поэтому, говоря об одномерности нити, мы, конечно, имеем в виду, что поперечные размеры малы по сравнению с длиной и что они не нарушают перечисленных выше свойств идеальной нити.

Модель идеальной нити представляет некоторую абстракцию, однако во многих случаях пряжа и нитки (в процессе их изготовления), тросы, цепи и канаты вполне удовлетворительно отвечают этой модели. К этой же модели сводятся иногда плоские задачи механики некоторых лент и оболочек. Поэтому теория идеальной нити имеет большое прикладное значение.

Пусть нить под действием приложенных к ней сил приняла некоторую равновесную конфигурацию.

Положение каждой точки растянутой или нерастяжимой нити будем определять дуговой координатой 5, отсчитываемой от фиксированной точки нити, например точки А (рис. 1.1). Выделим на нити какой-нибудь ее отрезок длиной и массой . Плотностью растянутой нити в точке (иногда говорят линейной плотностью) называется предел отношения при условии, что точка стремится по нити к точке М:

В общем случае линейная плотность нити зависит от выбранной точки, т. е.

Если до растяжения плотность нити была одинакова во всех точках, то нить называется однородной, в противном случае - неоднородной. При данном определении линейной плотности нити ее неоднородность может быть вызвана неоднородностью материала или различной площадью поперечного сечения нити.

Пусть нить находится в равновесии под действием распределенных сил. Сделаем в точке нити мысленный разрез и рассмотрим силу с которой часть нити, расположенная в направлении положительного отсчета дуговой координаты (на рис. 1.2 правая часть нити) действует на другую (левую) часть нити. Очевидно, что эта сила, называемая натяжением нити, направлена по общей касательной к нити в точке (в § 1.2 это утверждение будет доказано). Естественно, что левая часть нити действует на правую часть с

такой же по модулю, но направленной в противоположную сторону силой, т. е. силой

В каждой точке нити имеется свое натяжение Поэтому при равновесии натяжение нити будет функцией дуговой координаты

Если ввести единичный касательный вектор то будем иметь

где модуль натяжения нити.

Нормальное напряжение нити о определяется, как обычно, равенством

Здесь площадь поперечного сечения нити.

Пусть до растяжения длина элемента нити была а после растяжения она сделалась равной Так как растяжение нити зависит от нормального напряжения, то отношение представляет некоторую функцию а

Задавая функцию мы получим соответствующий закон растяжения, например упругое, пластическое растяжение и т. п. Остановимся более подробно на упругом растяжении однородной нити по закону Гука, когда выполняется равенство

где - модуль упругости нити. Пользуясь равенством (1.3), получим

где а удельное относительное удлинение нити. Если нить нерастяжима, то

Заметим, что модуль упругости нити имеет размерность обычной силы: в Международной системе физических единиц в технической системе соответственно и Очевидно, что

где модуль упругости материала нити пли

Пусть диаметры нити до и после растяжения. Тогда относительное изменение диаметра нити определится равенством

Считая, что нить изотропна и что растяяение подчинено закону Гука, будем иметь

где коэффициент Пуассона. Пользуясь равенствами (1.4) и (1.6), найдем значение диаметра нити после растяжения

Как правило, величина ничтожно мала по сравнению с единицей. Поэтому изменением диаметра нити при ее растяжении обычно пренебрегают (но крайней мере для стальных тросов) и полагают, что для растянутого троса

Рассмотрим нить, на которую действует распределенные по ее длине силы, например силы тяжести, силы

давления ветра и т. п. Главный вектор сил, действующих на элемент нити обозначим через и будем считать, что он приложен к точке находящейся мелщу (рис. 1.3). Силой, отнесенной к единице длины нити, или интенсивностью распределенных сил называется выражение

Отсюда с точностью до членов высшего порядка относительно получим

Размерность силы, отнесенной к единице длины нити, отличается от размерности обычной силы: в системе она равна в технической системе -

Распределенные силы, действующие на нить, можно разбить на массовые и поверхностные. К первым относятся силы, зависящие от массы нити, например силы тяжести и силы инерции. Поверхностные силы, например силы давления набегающего потока, от массы нити не зависят (они могут зависеть от площади продольного диаметрального сечения нити, т. е. от ее диаметра, скорости набегающего потока и других факторов).

Остановимся более подробно на массовых силах. Если через обозначить силу, отнесенную к единице длины, то сила отнесенная к единице массы нити, определится равенством

В частности, для силы тяжести будем иметь

где ускорение силы тяжести, сила тяжести, отнесенная к единице длины нити. Для однородной нерастянутой нити сила численно равна весу единицы длины пити.

Так как масса нити при растяжении не изменяется, то будем иметь

Отсюда, пользуясь равенством (1.3), получим

Таким образом, массовые силы, отнесенные к единице длины растяжимой нити, можно представить равенством

Поверхностные силы, отнесенные к единице длины, обычно пропорциональны диаметру нити

где коэффициент пропорциональности X зависит от разных факторов (например, от скорости потока, плотности среды и т. п.). Как уже отмечалось, в подавляющем большинстве случаев изменением диаметра растяжимой нити можно пренебречь, и тогда число в последней формуле следует считать постоянным. Для растяжимых нитей, модуль упругости которых очень мал, возможен случай, когда изменение диаметра нити нужно учесть. Тогда следует воспользоваться формулой (1.8).

В общем случае сила отнесенная к единице длины нити, зависит от дуговой координаты точки положения последней в пространстве, направления касательной или нормали к нити и натяжения Действительно, плотность и, следовательно, сила тяжести неоднородной нити зависят от положения точки на нити, т. е. от ее дуговой координаты Сила гидростатического давления направлена по нормали к нити и модуль ее пропорционален высоте уровня, т. е. эта сила зависит от координат точки. Из формулы (1.15) следует, что в аналитическое выражение силы отнесенной к единице длины растянутой нити, явно входит модуль

натяжения Поэтому, если рассматривать пить в прямоугольной системе координат то в общем случае будем иметьРис. 1.4.

Если же концы нити закреплены, то эти равенства могут служить для определения реакций точек закрепления. Чаще всего встречаются нити с двумя закрепленными концами, реже - нити с одним закрепленным и одним свободным концами, причем задается или можно определить из дополнительной информации значение силы, приложенной к свободному концу (положение его, как правило, неизвестно). Встречаются и более сложные граничные условия. Многие из них будут рассмотрены при изучении конкретных задач. Кроме непосредственных условий на границах, должны быть заданы геометрические (один или несколько) параметры, например длина нити, стрела провисания и т. п. Эти элементы мы будем условно относить также к граничным условиям.

Теперь можно сформулировать основную задачу о равновесии идеальной нити: даны действующие на нить силы (распределенные и сосредоточенные), закон растяжения нити и найдены в необходимом числе граничные условия. Требуется определить форму равновесия нити, натяжение ее в любой точке и изменение длины (для растяжимых нитей).

В заключение отметим, что при решении конкретных задач основные трудности возникают, как правило, при интегрировании дифференциальных уравнений равновесия нити. Однако следует иметь в виду, что во многих случаях уравнения равновесия нити интегрируются сравнительно легко, а наибольшие затруднения появляются при построении решения, удовлетворяющего граничным условиям.


Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы "говорит" реагирует опора . Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, "сопротивляются".

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.


Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину - уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации - сила упругости.

Закон Гука


Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел .

Вес тела

Вес тела - это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести - сила, которая возникает в результате взаимодействия с Землей. Вес - результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же - сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.



Сила реакции опоры и вес - силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес - это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость - состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!



Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес - сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка - отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше - тонет.



Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона , сила Ампера , сила Лоренца , подробно рассмотрены в разделе Электричество .

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой . Поэтому на схемах различные точки приложения переносят в одну точку - в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее - между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.