Дефектоскопия трубопроводов – ультразвуковой способ контроля труб, сварных швов и соединений. Ультразвуковой контроль сварных стыков труб Ультразвуковой контроль толщины стенки трубы


Швы в конструкциях со сварными соединениями должны постоянно подвергаться контролю. И это не зависит от того, когда соединение было сделано. Для этого используются различные методы, один из которых – ультразвуковая дефектоскопия (УЗД). Она по точности проведенных исследований превосходит и рентгеноскопию, и радио-дефектоскопию, и гамма-дефектоскопию.

Необходимо отметить, что эта методика не нова. Ее используют с тридцатых годов прошлого столетия, и сегодня ультразвуковой контроль сварных соединений популярен, потому что с его помощью можно выявить мельчайшие дефекты внутри сварочного шва. И, как показывает практика, именно скрытые дефекты являются основными серьезными причинами ненадежности свариваемой конструкции.

Технология ультразвуковой дефектоскопии. (Слева отсутствие дефекта, справа дефет)

В основе ультразвуковых колебания лежат обычные акустические волны, которые имеют частоту колебания выше 20 кГц. Человек их не слышит. Проникая внутрь металла, волны попадают между его частицами, которые находятся в равновесии, то есть, колеблются в одной фазе. Расстояние между ними равно длине ультразвуковой волны. Этот показатель зависит от скорости прохождения через металлический шов и частоты самих колебаний. Зависимость определяется по формуле:

  • L – это длина волны;
  • с – скорость ее перемещения;
  • f – частота колебаний.

Скорость же зависит от плотности материала. К примеру, в продольном направлении ультразвуковые волны двигаются быстрее, чем в поперечном. То есть, если на пути волны попадаются пустоты (другая среда), то изменяется и ее скорость. При этом, встречая на своем пути различные дефекты, происходит отражение волн от стенок раковин, трещин и пустот. А соответственно и отклонение от направленного потока. Изменение движения оператор видит на мониторе УЗК прибора, и по определенным характеристикам определяет, какой дефект встал на пути движения акустических волн.

К примеру, обращается внимание на амплитуду отраженной волны, тем самым определяется размер дефекта в сварочном шве. Или по времени распространения ультразвуковой волны в металле, что определяет расстояние до дефекта.

Виды ультразвукового контроля

В настоящее время в промышленности применяются несколько способов ультразвуковой дефектоскопии сварных швов. Рассмотрим каждый из них.

  1. Теневой метод диагностики. Это методика основана на использовании и сразу двух преобразователей, которые устанавливаются по разные стороны исследуемого объекта. Один из них излучатель, второй – приемник. Место установки – строго перпендикулярно исследуемой плоскости сварного шва. Излучатель направляет поток ультразвуковых волн на шов, приемник их принимает с другой стороны. Если в потоке волн образуется глухая зона, то это говорит о том, что на его пути попался участок с другой средой, то есть, обнаруживается дефект.
  2. Эхо-импульсный метод. Для этого используется один УЗК дефектоскоп, который и излучает волны, и принимает их. При этом используется технология отражения ультразвука от стенок дефектных участков. Если волны прошли сквозь металл сварочного шва и не отразились на приемном устройстве, то дефектов в нем нет. Если произошло отражение, значит, внутри шва присутствует какой-то изъян.
  3. Эхо-зеркальный. Данный ультразвуковой контроль сварных швов – это подтип предыдущего. В нем используется два прибора: излучатель и приемник. Только устанавливаются они по одну сторону от исследуемого металла. Излучатель посылает волны под углом, они попадают на дефекты и отражаются. Эти отраженные колебания и принимает приемник. Обычно, таким образом, регистрируют вертикальные дефекты внутри сварочного шва – трещины.
  4. Зеркально-теневой. Этот ультразвуковой метод контроля – симбиоз теневого и зеркального. Оба прибора устанавливаются с одной стороны от исследуемого металла. Излучатель посылает косые волны, они отражаются от стенки основного металла и принимаются приемником. Если на пути отраженных волн не встретились изъяны сварного шва, то они проходят без изменений. Если на приемнике отразилась глухая зона, то, значит, внутри шва есть изъян.
  5. Дельта-метод. В основе этого способа контроля сварных соединений ультразвуком лежит переизлучение дефектом направленных акустических колебаний внутрь сварного соединения. По сути, отраженные волны делятся на зеркальные, трансформируемые в продольном направлении и переизлучаемые. Приемник может уловить не все волны, в основном отраженные и движущиеся прямо на него. От количества полученных волн будет зависеть величина дефекта и его форма. Не самая лучшая проверка, потому что она связана с тонкой настройкой оборудования, сложность расшифровки полученных результатов, особенно, когда проверяется сварочный шов шириною более 15 мм. При проведении ультразвукового контроля качества металла этим способом предъявляются жесткие требования к чистоте сварочного шва.

Вот такие методы ультразвукового контроля сегодня используются для определения качества сварных соединений. Необходимо отметить, что чаще всего специалисты используют эхо-импульсный и теневой метод. Остальные реже. Оба вариант в основном используются в ультразвуковом контроле тру.

Как проводится ультразвуковая дефектоскопия

Все выше описанные технологии относятся к категории ультразвуковых методов неразрущающего контроля. Они удобны и просты в исполнении. Рассмотрим, как теневой метод используется на практике. Все действия проводятся по ГОСТ.

  • Производится зачистка сварного шва и прилегающих к нему участков на ширину 50-70 мм с каждой стороны.
  • Чтобы получились более точные результаты на соединительный шов наносится смазочное средство. К примеру, это может быть солидол, глицерин или любой другое техническое масло.
  • Производится настройка прибора по ГОСТ.
  • Излучатель устанавливается с одной стороны и включается.
  • С противоположной стороны искателем (приемником) производятся зигзагообразные перемещения вдоль сварного стыка. При этом прибор немного поворачивают туда-сюда вокруг своей оси на 10-15°.
  • Как только на мониторе появится сигнал с максимальной амплитудой, то это вероятность, что в металле шва обнаружен дефект. Но необходимо удостоверится, что отражающий сигнал не стал причиной неровности шва.
  • Если не подтвердилось, то записываются координаты изъяна.
  • Согласно ГОСТ испытание проводится за два или три прохода.
  • Все результаты записываются в специальный журнал.

Внимание! Контроль качества сварных угловых соединений (тавровых) производится только эхо-импульсным способом, теневой метод здесь не подойдет.

Параметры оценки результатов

Чувствительность прибора – основной фактор качества проводимых работ. Как с его помощью можно распознать параметры дефекта.

Во-первых, определяется количество изъянов. Даже при самых близких друг к другу расстояниях эхо-метод может определить: один дефект в сварочном шве или два (несколько). Их оценка производится по следующим критериям:

  • амплитуда акустической волны;
  • ее протяженность (условная);
  • размеры дефекта и его форма.

Протяженность волны и ширину изъяна можно определить путем перемещения излучателя вдоль сварочного соединения. Высоту трещины или раковины можно узнать, исходя из разницы временных интервалов между отраженной волной и излученной раньше. Форма же дефекта определяется специальной методикой. В основе ее лежит форма отраженного сигнала, появляющаяся на мониторе.

Метод ультразвуковой дефектоскопии сложный, поэтому качество полученных результатов зависит от квалификации оператора и соответствия полученных показателей, которые регламентирует ГОСТ.

Достоинства и недостатки ультразвукового контроля труб

К достоинствам метода для контроля сварных швов можно отнести следующие критерии.

  • Обследование проходит быстро.
  • Диагностический результат высокий.
  • Метод контроля сварных швов с помощью ультразвука – самый дешевый вариант.
  • Он же и самый безопасный для человека.
  • Устройство для контроля качества шва – портативный прибор, поэтому мобильность технологии обеспечивается.
  • Ультразвуковая диагностика проводится без повреждения исследуемой детали.
  • Нет необходимости останавливать оборудование или объект для того, чтобы провести контроль сварки.
  • Можно проверять стыки нержавеющих металлов, черных и цветных.

Недостатки тоже есть.

  • Контроль сварных соединений трубопроводов или других конструкций не дает точности по форме найденного дефекта. Все дело в том, что в трещинах или раковинах сварного шва могут присутствовать воздух (газ) или шлак. У двух материалов плотность разная, а значит, и разная отражательная способность.
  • Сложно определить дефекты в деталях со сложной конфигурацией. Отправленные волны могут отразиться на другом участке шва, а не на исследуемом, за счет кривизны. А это выдаст некорректную информацию.
  • Сложно провести ультразвуковой контроль труб, если металл, из которого они изготовлены, имеет крупнозернистую структуру. Внутри материала будет происходить рассеивания направленного потока и затухание отраженных волн.
  • Важно ответственно подойти к очистке сварного шва. Его волнистость или загрязнение, ржавчина или окалины, капли разбрызганного металла или воздушные седла и поры на поверхности создадут преграду к получению правильных показателей, соответствующих ГОСТ.

Инструкция распространяется на стыковые кольцевые сварные соединения труб, диаметром от 200 мм и более, толщиной стенки от 4 до 20 мм, с давлением менее 10 МПа из низкоуглеродистых сталей Ст. 10 и сталь 20 (ГОСТ 1050-88), выполненные сваркой плавлением, и устанавливает требования к неразрушающему контролю ультразвуковым методом.

АО НИИХИММАШ

КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ
КОЛЬЦЕВЫЕ ШВЫ СТЫКОВЫХ СВАРНЫХ СОЕДИНЕНИЙ ТРУБ

МЕТОДИКА УЛЬТРАЗВУКОВОГО КОНТРОЛЯ

(Тема № 923176)

РДИ 26-11-65-96

СОГЛАСОВАНО:

Зам. директора по качеству

Начальник отдела № 23

Бугульминского механического завода

Н.В. Химченко

В.К. Конкин

Начальник сектора

«__» ________________ 1997 г.

В.А. Бобров

Исполнитель

В.В. Волокитин

Москва 1997 г.

ВВЕДЕНИЕ

Настоящая инструкция распространяется на стыковые кольцевые сварные соединения труб, диаметром от 200 мм и более, толщиной стенки от 4 до 20 мм, с давлением менее 10 МПа из низкоуглеродистых сталей Ст. 10 и сталь 20 (ГОСТ 1050-88 ), выполненные сваркой плавлением, и устанавливает требования к неразрушающему контролю ультразвуковым методом.

Стандарт разработан с учетом требований ГОСТ 14782-86 «Контроль неразрушающий, сварные соединения. Методы ультразвуковые», ОСТ 26-2044-83 «Швы стыковых и угловых сварных соединений сосудов и аппаратов, работающих под давлением», ОСТ 36-75-83 «Контроль неразрушающий. Сварные соединения трубопроводов. Ультразвуковой метод», СНиП 3.05.05-84 , а также опыта работы ОАО НИИхиммаш по ультразвуковому контролю упомянутых труб.

После накопления опыта ультразвукового контроля труб специалистами вашего предприятия через 6 - 12 месяцев по вашим материалам ОАО НИИхиммаш может согласовать изменения и дополнения к данной методике.

Необходимость применения ультразвукового метода контроля и его объем устанавливаются нормативно-технической документацией.

1. НАЗНАЧЕНИЕ МЕТОДА

1.1. Ультразвуковой контроль предназначен для выявления в сварных швах и околошовной зоны трещин, непроваров, несплавлений, пор, шлаковых включений и других видов дефектов без расшифровки их характера, но с указанием координат, условных размеров и количества обнаруженных дефектов.

1.2. Ультразвуковой контроль проводится при температуре окружающего воздуха от 5 до 40 °С. В случаях подогрева контролируемого изделия в зоне перемещения искателя до температур от 5 до 40 °С разрешается проведение контроля при температуре окружающего воздуха до минус 10 °С. При этом должны применяться дефектоскопы и преобразователи, сохраняющие работоспособность (по паспортным данным) при температурах до минус 10 °С и ниже.

1.3. Ультразвуковой контроль проводится при любых пространственных положениях сварного соединения.

2. ТРЕБОВАНИЯ К ДЕФЕКТОСКОПИСТАМ И УЧАСТКУ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ

2.1. Требования к дефектоскопистам по ультразвуковому контролю.

2.1.1. Ультразвуковой контроль должен проводиться группой из двух дефектоскопистов.

2.1.2. К проведению ультразвукового контроля допускаются лица, прошедшие теоретическую и практическую подготовку согласно «Правил аттестации специалистов неразрушающего контроля ,» утвержденных Госгортехнадзором России, имеющие удостоверение второго уровня на право проведения контроля и выдачи заключения о качестве сварных швов по результатам ультразвукового контроля.

Дефектоскописты первого и второго уровней должны проходить переаттестацию через три года, а также при перерыве в работе более 1-го года и при изменении места работы.

Аттестация и переаттестация специалистов производится в специальных аттестационных центрах, имеющих лицензию.

2.1.3. Руководство работами по ультразвуковому контролю должны осуществлять инженерно-технические работники или дефектоскописты, имеющие второй или третий уровни квалификации.

2.2. Требования к участку ультразвукового контроля.

2.2.1. Участок ультразвукового контроля должен иметь производственные площадки, обеспечивающие размещение рабочих мест дефектоскопистов, оборудования и принадлежностей.

2.2.2. Участок ультразвукового контроля должен быть обеспечен:

Ультразвуковыми дефектоскопами с комплектом стандартных и специальных преобразователей;

Распределительным щитом от сети переменного тока частотой 50 Гц, напряжением 220 В ± 10 %, 36 В ± 10 %, переносные колодки сетевого питания, заземляющие шины;

Стандартными и испытательными образцами, вспомогательными устройствами для проверки и настройки дефектоскопов с преобразователями;

Наборами слесарного, электромонтажного и измерительного инструмента, принадлежностями (мел, цветные карандаши, бумага, краски);

Контактной жидкостью, масленкой, обтирочным материалом, фальцевой кистью;

Рабочими столами и верстаками;

Стеллажами и шкафами для хранения дефектоскопов с комплектом преобразователей, образцов, материалов и документации.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1. При работе с ультразвуковыми дефектоскопами необходимо выполнять требования безопасности и производственной санитарии в соответствии с ГОСТ 12.2.007-75, СНиП III-4-80 , «Правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей », утвержденными Госэнергонадзором СССР 12.04.1969 г., с внесенными дополнениями и изменениями, и «Санитарными нормами и правилами при работе с оборудованием, создающим ультразвук, передаваемый контактным путем на руки работающих» № 2282-80, утвержденными Министерством здравоохранения».

3.2. При питании от сети переменного тока ультразвуковые дефектоскопы должны быть заземлены медным проводом сечением не менее 2,5 мм 2 .

3.3. Подключение дефектоскопов к сети переменного тока осуществляют через розетки, установленные электриком на специально оборудованных постах.

3.4. Дефектоскопистам запрещается вскрывать подключенный к источнику питания дефектоскоп и производить его ремонт ввиду наличия блока с высоким напряжением.

3.5. Запрещается проведение контроля вблизи мест выполнения сварочных работ без ограждения светозащитными экранами.

3.6. Запрещается применять масло в качестве контактной жидкости при проведении ультразвукового контроля вблизи мест кислородной резки и сварки, а также в помещениях для хранения баллонов с кислородом.

3.7. При проведении работ на высоте, в стесненных условиях рабочие места должны обеспечивать дефектоскописту удобный доступ к сварному соединению при соблюдении условий безопасности (сооружение лесов, подмостей, использование касок, монтажных поясов, спецодежды). Запрещается проведение контроля без устройств защиты от воздействия атмосферных осадков на дефектоскописта, аппаратуру и место контроля.

3.8. Дефектоскописты не реже одного раза в год должны проходить медицинские осмотры в соответствии с приказом Министерства здравоохранения СССР № 555 от 29 сентября 1989 г. (Приложение 1 п. 4.5) и приказом № 280/88 от 05.10.95 г. Министерства здравоохранения и медицинской промышленности РФ (Приложение № 1 п. 5.5).

3.9. К работам по ультразвуковой дефектоскопии допускаются лица в возрасте не моложе 18 лет, прошедшие инструктаж по технике безопасности с регистрацией в журнале по установленной форме. Инструктаж должен проводиться периодически в сроки, установленные приказом по организации (завод, комбинат и т.д.).

3.10. Администрация организации, проводящей ультразвуковой контроль, обязана обеспечить выполнение требований техники безопасности.

3.11. При нарушении правил техники безопасности дефектоскопист должен быть отстранен от работы и вновь допущен к ней после дополнительного инструктажа.

4. ПОДГОТОВКА К КОНТРОЛЮ

4.1. Контроль стыковых сварных соединений толщиной 4 - 9 мм производится с одной поверхности изделия с двух сторон сварного шва за один проход прямым и однократно отраженным лучом.

4.2. Основные параметры контроля устанавливаются согласно технических условий на трубы. При отсутствии технических условий, руководствоваться таблицей № 1 ОСТ 26-2044-83 .

4.6. Настройка предельной чувствительности ультразвукового дефектоскопа производится с использованием дефектов типа сегментных отражателей или угловой отражатель.

При настройке чувствительности в начале устанавливается режим повышенной чувствительности. Получают эхо-сигнал от отражателя на прямом и отраженном лучах. Затем эхо сигналы уравнивают по высоте и уменьшают чувствительность, пока амплитуда не достигнет уровня 30 мм для прямого и отраженного луча.

УСТАНОВКА ЗОНЫ КОНТРОЛЯ В РЕЖИМЕ «РАЗВЕРТКА ПЛАВНО»

Черт. 1

Если прибор не позволяет уровнять сигналы, то следует настройку чувствительности производить отдельно для прямого и отраженного луча и контроль проводить за два прохода.

4.7. При поиске дефектов чувствительность увеличивается на 4 - 6 дБ при этом уровень шумов на экране по высоте не должен превышать 5 ÷ 10 мм.

4.8. Координата Ду для сварных швов толщиной от 4 до 9 мм определяется в случае необходимости отличить помеху от сигнала дефекта.

5. ПРОВЕДЕНИЕ КОНТРОЛЯ

5.1. Проведение контроля включает операции прозвучивания металла шва и околошовной зоны и определения измеряемых характеристик дефектов. Контроль производят преобразователями, имеющими поминальную частоту 5,0 МГц и угол ввода по стали 70 град. (см. п. .).

5.2. Прозвучивание швов выполняют способом поперечно-продольного перемещения преобразователя. Скорость перемещения преобразователя должна быть, ориентировочно, не более 30 мм/с.

5.3. Акустический контакт преобразователя с поверхностью, по которой он перемещается, обеспечивают через контактную жидкость легким нажатием на преобразователь. О стабильности акустического контакта свидетельствует уменьшение амплитуд сигналов на заднем фронте зондирующего импульса, создаваемых акустическими шумами преобразователя, по сравнению с их уровнем при ухудшении или отсутствии акустического контакта преобразователя с поверхностью изделия. Контактные жидкости применять согласно ОСТ 26-2044-83 .

5.4. Прозвучивание сварных соединений и анализ эхо-сигналов в строб-импульсе производят на поисковой чувствительности, а определение характеристик выявленных дефектов - на браковочных уровнях. Анализируют только те эхо-сигналы, которые наблюдаются в строб-импульсе.

5.5. В процессе контроля необходимо не реже двух раз в смену проверять настройку дефектоскопа на браковочный уровень.

5.6. На браковочном уровне оценивают амплитуду сигнала, условную протяженность, условное расстояние между дефектами и количество дефектов.

5.7. Швы сварных соединений прозвучивают прямым и однократно отраженным лучами с двух сторон (черт. ).

При появлении эхо-сигналов около заднего или переднего фронтов строб-импульса следует уточнить, не являются ли они следствием отражения ультразвукового луча от валика усиления или провисания в корне шва (черт. ). Для этого замеряют расстояния L 1 и L 2 - положение преобразователей II при которых эхо-сигнал от отражателя имеет максимальную амплитуду, и затем располагают преобразователь с другой стороны шва на тех же расстояниях L 1 и L 2 от отражателя - положение преобразователей I .

Способ просвечивания сварных соединений

а - прямым лучом; б - отраженным лучом.

Черт. 2

Схема расшифровки ложных эхо-сигналов

а - от провисания в корне шва, б - от валика усиления шва

Черт. 3

При отсутствии дефектов под поверхностью валика усиления или в корне шва эхо-сигналы на краях строб-импульса наблюдаться не будут. Сигналы от валика усиления будут наблюдаться строго на границе строб-импульса.

Если эхо-сигнал вызван отражением от валика усиления шва, то при прикосновении к нему тампоном, смоченным контактной жидкостью, амплитуда эхо-сигнала будет изменяться в такт с прикосновением тампона.

5.8. В сварных соединениях с подкладным кольцом и взамок дефекты типа трещин и непроваров чаще наблюдаются в корневой части шва, а шлаковые и газовые включения могут располагаться в любом слое наплавленного металла. Сигнал от непровара в корне шва при прозвучивании прямым и однократно отраженным лучом (черт. ). Координата дефекта Д У соответствует толщине стенки, а Д У указывает расположение отражателя в ближней к преобразователю половине усиления шва или в середине усиления. Преобразователь при этом обычно несколько удален от шва.

5.9. При контроле сварных соединений с подкладным кольцом или взамок могут появляться «ложные» сигналы (черт. ):

От зазора между стенкой сварного соединения и подкладным кольцом или «усом» при соединении взамок (эхо-сигнал 1);

От заплыва металла или шлака под подкладное кольцо или «ус» (эхо-сигнал 2);

От углов подкладного кольца или «уса» (эхо-сигнал 3);

От границы валика усиления шва (эхо-сигнал 4).

5.10. Эхо-сигналы 1 и 2 от зазора или заплыва металла (шлака) при измерении координаты Д Х соответствует дальней от преобразователя половине усиления шва, причем преобразователь расположен вплотную к усилению шва. Координата Ду при этом соответствует толщине стенки или несколько больше (на 1 - 2 мм). Наличие отражателей не подтверждается при прозвучивании с противоположной стороны усиления шва, что отличает их от трещин и непроваров в корне шва.

5.11. Эхо-сигнал 3 от углов подкладного кольца или «уса», как правило, появляется при прозвучивании сварного шва по всей длине стыка и располагается в определенном месте строб-импульса (в зоне контроля однократно отраженным лучем), при этом координата Д Х соответствует отражателю, расположенному в районе дальней от преобразователя границы усиления шва.

При наличии непроваров (несплавления) в корне шва сигнал от подкладного кольца резко уменьшается или совсем отсутствует.

5.12. Эхо-сигнал 4 от границы усиления шва появляется в районе заднего фронта строб-импульса (отметка 2б) при прозвучивании верхней части шва однократно отраженным лучем, причем координата Д У соответствует двойной толщине стенки или несколько больше ее, а координата Д Х указывает дальнюю границу усиления шва. При прозвучивании с противоположной стороны усиления шва местоположение отражателя не подтверждается и он фиксируется как ложный.

СХЕМА ОТРАЖЕНИЯ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ ОТ НЕПРОВАРА В КОРНЕ ШВА (а) И СООТВЕТСТВУЮЩАЯ ОСЦИЛЛОГРАММА (б)

Черт. 4

СХЕМА УЛЬТРАЗВУКОВОГО КОНТРОЛЯ СВАРНЫХ ШВОВ С ПОДКЛАДНЫМ КОЛЬЦОМ (а) СОЕДИНЕНИЯ ВЗАМОК (б) И СООТВЕТСТВУЮЩАЯ ОСЦИЛЛОГРАММА (в)

Черт. 5

6. ИЗГОТОВЛЕНИЕ КОНТРОЛЬНЫХ ОБРАЗЦОВ

Контрольные образцы следует изготовлять из отрезков труб шириной 20 мм, длиной не менее 120 мм. Искусственные отражатели наносить на внутренний и внешний сторонах указанных образцов специальным приспособлением по нанесению дефекта типа углового отражателя. Инструмент желательно выбирать шириной 1,5 - 2,0 мм.

7. НОРМЫ БРАКОВКИ

По результатам ультразвукового контроля сварные соединения трубопроводов давлением менее 10 МПа (100 кгс/см 2) считаются качественными, если отсутствуют:

а) протяженные плоскостные дефекты;

б) объемные непротяженные дефекты с амплитудой отраженного сигнала, соответствующей эквивалентной площади 1 мм 2 для толщин 4 - 10 мм и 2 мм 2 для толщин 11 - 20 мм.

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ КОНТРОЛЯ

8.1. Оформление результатов контроля производится в соответствии с ОСТ 26-2044-83 .

8.2. Для сокращенного обозначения дефектов следует пользоваться ГОСТ 14782-86 .

ПРИЛОЖЕНИЕ № 1

ТЕХНОЛОГИЯ ВОССТАНОВЛЕНИЯ ПРЕОБРАЗОВАТЕЛЕЙ ТИПА ПКН PC

Ввиду того, что призмы преобразователя изготовлены из органического стекла и подвержены истиранию, желательно для процесса их последующего восстановления не доводить износа протектора до уровня корпуса ПЭП, т.е. максимальный износ от номинального уровня составляет 1,3 - 1,4 мм (остаток не менее 0,2 мм до корпуса).

Восстановление ПЭП производят следующим образом: зачистка. ПЭП устанавливают на крышку (вверх ногами) в тиски фрезерного станка зажимают (не сильно, без использования воротка, в противном случае может произойти отрыв пьезопластин от призм) и острозаточенным резцом «балеринкой» с минимальной подачей по глубине, выравнивают (зачищают) остатки протектора до плоского состояния.

Из листового оргстекла толщиной 3 мм вырезаются заготовки протекторов размером 20×22 мм, на которых с одной стороны (размер 20 мм) наносят шумопоглощающие зубцы (шаг 0,8 мм; угол 45° - 50°, глубина 0,8 мм), аналогичные имеющимся на призме.

Изготовленные протекторы с одной стороны зачищают на мелкой наждачной бумаге до получения матовой поверхности.

Обработанные таким образом поверхности ПЭП (см. выше) и протекторы обезжиривают ацетоном или спиртом. Далее производится склейка.

Склейка ПЭП с протектором производится либо очень жидким раствором «Акрилоксида» (стоматологический пломбировочный материал) соотношение порошок-жидкость примерно 5 - 10 % порошка - 95 - 90 % жидкость, либо продающимся в ларьках и хоз. магазинах «Японским» акрилатным суперклеем. Склейка производится с помощью струбцинки. Звукопоглощающие зубцы на передней грани протектора по уровню желательно совместить с имеющимися такими же зубцами на призмах, избыток клея (в жидком состоянии) удалить из зубцов и с боковых поверхностей искателя.

Просушка примерно 10 мин. Под лампой мощностью не выше 60 Вт (расстояние до лампы - 10 см). После склейки и просушки ПЭП устанавливается на фрезерный станок (порядок установки и зажима см. выше), и балеринкой производится продольная выборка необходимого радиуса.

Глубина выборки, в тонкой ее части (центр искателя) выбирается такой, чтобы остаток призмы от обреза корпуса до центра кривизны обрабатываемого на станке в сумме составлял 1,5 - 1,65 мм.

Соответственно если остаток призм до обреза корпуса ПЭП после зачистки составлял 0,1 ÷ 0,2 мм, глубина радиусной выборки составляет, (при толщине протектора 3 мм) - 1,6 ÷ 1,7 мм.

После изготовления кривизны дисковой фрезой толщиной 0,85 - 1,0 мм посередине полученной выемки делается продольный пропил для вставки акустического экрана отсутствующего у наклеенного протектора.

Пропил соответственно должен достигнуть остатка экрана оставшегося на ПЭП при зачистке призмы (глубина реза 1,6 ÷ 1,7 мм) «Японским» суперклеем вклеивают. Экран, толщиной 0,85 - 1,0 мм (по толщине фрезы) вырезают из маслостойкой пробково-компаундной прокладки от двигателя автомобиля «Москвич»-407; 408 (Прокладка люка толкателей блока цилиндров).

После просушки остаток экрана по уровень новой призмы обрезают скальпелем.

В оставшуюся у звукопоглощающих зубцов выемку в качестве звукоизоляции наносят массу следующего состава: 3 части автомобильной полиэфирной шпаклевки (любой марки коломикс, хемпропол и т.п.), 1 часть - порошок, пробки (по объему).

После просушки лишняя звукоизолирующая масса срезается скальпелем. Далее протектор шлифуется мелкой наждачной шкуркой для выведения рисок после «балеринки» и прочих шероховатостей. При соблюдении описанных операций, и наличии у мастера необходимой квалификации преобразователь после восстановления по РШХ практически не отличим от нового.

ПРИЛОЖЕНИЕ 2

ПАСПОРТ
5,0 70° Æ 89 № 1, 2 ЦНИИТМАШ

Основные технические данные:

f 0 , МГц 5 ± 10 %

f

f , МГц 4,6 ± 0,1

7. Расчетное значение центра

Фокусного пятна по глубине, мм 6,5

Примечани е Æ

Преобразователь соответствует требованиям, предъявляемым к средствам неразрушающего контроля по ГОСТ 26266-90 , и признан годным к эксплуатации.

ПАСПОРТ
на преобразователь ультразвуковой наклонный раздельно-совмещенный общего назначения типа ПКН PC 5,0 70° Æ 114 № 3, 4 ЦНИИТМАШ

Основные технические данные:

1. Номинальное значение рабочей частоты f 0 , МГц 5 ± 10 %

* отклонение рабочей частоты преобразователя может достигать для f - свыше 5 МГц, больших значений, без ухудшения РШХ ПЭП (ГОСТ 26266-90 )

2. Фактическое значение рабочей частоты f , МГц 4,6 ± 0,1

3. Угол ввода (по стали), град. 70°

4. Размер пьезопластины, мм 2×5×5

5. Стрела преобразователя, мм 6 ± 0,5

6. Длительность эхо-импульса, мкс 1,2 ± 0,1

7. Расчетное значение центра

фокусного пятна по глубине, мм 6,5

8. Диапазон прозвучиваемых толщин, мм 2 - 10

9. Рабочий диапазон температур, град. С -10 ÷ +30

10. Габаритные размеры преобразователя, мм 20×22×19

Примечани е: измерение длительности эхо-импульса проводится на стандартном эталоне СО-2 по ГОСТ 14762-76 на уровне 12 дБ от максимума, от цилиндрического сверления Æ 6 мм с ближней стороны, прибором УД2-12. Измерения проводятся до изготовления кривизны протектора.

ПАСПОРТ
на преобразователь ультразвуковой наклонный раздельно-совмещенный общего назначения типа ПКН PC 5,0 70° Æ 159 № 5, 6 ЦНИИТМАШ

Основные технические данные:

1. Номинальное значение рабочей частоты f 0 , МГц 5 ± 10 %

* отклонение рабочей частоты преобразователя может достигать для f - свыше 5 МГц, больших значений, без ухудшения РШХ ПЭП (ГОСТ 26266-90 )

2. Фактическое значение рабочей частоты f , МГц 4,6 ± 0,1

3. Угол ввода (по стали), град. 70°

4. Размер пьезопластины, мм 2×5×5

5. Стрела преобразователя, мм 6 ± 0,5

6. Длительность эхо-импульса, мкс 1,2 ± 0,1

7. Расчетное значение центра фокусного

пятна по глубине, мм 6,5

8. Диапазон прозвучиваемых толщин, мм 2 - 10

9. Рабочий диапазон температур, град. С -10 ÷ +30

10. Габаритные размеры преобразователя, мм 20×22×19

Примечание : измерение длительности эхо-импульса проводится на стандартном эталоне СО-2 по ГОСТ 14762-76 на уровне 12 дБ от максимума, от цилиндрического сверления Æ 6 мм с ближней стороны, прибором УД2-12. Измерения проводятся до изготовления кривизны протектора.

Преобразователь соответствует требованиям, предъявляемым к средствам неразрушающего контроля по ГОСТ 26266-90 , и признан годным к эксплуатации.

Для промышленных инженерных коммуникаций введен ряд стандартов, подразумевающих довольно жесткую проверку соединений. Эти методики переносятся на системы, находящиеся в частном владении. Применение методов позволяет избежать аварийных ситуаций и провести наружный и скрытый монтаж с требуемым уровнем качества.

Входной контроль

Входной контроль труб проводится для всех типов материалов, включая металлопластиковые, полиэтиленовые и полипропиленовые после покупки изделий.

Упоминаемые стандарты подразумевают проверку труб, независимо от материала, из которого они изготовлены. Входной контроллинг подразумевает правила проверки получаемой партии. Проверка сварных соединений проводится в рамках приемки работ по монтажу коммуникаций. Описываемые способы обязательны к применению строительно-монтажными организациями при сдаче жилых, коммерческих и промышленных объектов с системами водоснабжения и отопления. Похожие способы применяются, где необходим контроль качества труб в коммуникациях промышленного типа, действующих в составе оборудования.

Последовательность проведения и методики

Приемка продукции после поставки является важным процессом, впоследствии гарантирующим отсутствие нерациональных затрат на замену трубной продукции и аварий. Тщательной проверке подлежит, как количество продукции, так и ее особенности. Количественная проверка позволяет учитывать весь расход продукции и избежать лишних затрат, связанных с завышенными нормами и нерациональным использованием. Нельзя упускать и влияние человеческого фактора.

Работы проводятся в соответствии с разделом № 9 стандарта СП 42-101-96.

Последовательность входных мероприятий следующая:

  • Проверка сертификата и соответствия маркировки;
  • Выборочные испытания образцов проводятся при сомнениях в качестве. Исследуется величина предела текучести при растяжении и удлинении при механическом разрыве;
  • Даже при отсутствии сомнений в поставке отбирается небольшое количество образцов для испытаний, в пределах 0,25-2% партии, но не менее 5 шт. При использовании продукции в бухтах, отрезают 2 м;
  • Проводится осмотр поверхности;
  • Осматривается на предмет вздутий и трещин;
  • Измеряют типовые размеры толщин и стенок микрометром или штангенциркулем.

При официальной проверке коммерческой или государственной организацией по факту проведения процедуры составляется протокол.

Неразрушающий контроль – особенности

Неразрушающие способы используются в функционирующих системах инженерных коммуникации. Особенное внимание уделяется реальному состоянию металла и сварным соединениям. Безопасность эксплуатации определяется качеством сварки швов. При длительной эксплуатации исследуется степень повреждения конструкции между соединениями. Они могут быть повреждены ржавчиной, что приводит к истончению стенок, а засорение полости может привести к повышению давления и прорыву трубопровода.

Для этих целей предложено специализированное оборудование – дефектоскопы (например, ультразвуковые), которые могут применяться для проведения работ в частных и коммерческих целях.

В исследованиях трубопроводов применяют методы контроля труб:


С помощью данного оборудование отслеживается развитие трещин или нарушение целостности. Причем основным достоинством является определение скрытых дефектов. Очевидно, что каждый из этих методов показывает высокую эффективность на определенных видах повреждений. Вихретоковый дефектоскоп в какой-то степени является универсальным и оптимальным по стоимости.

Ультразвуковой контроль труб – более дорогое удовольствие и требовательно, но очень популярно среди специалистов благодаря сформировавшемуся стереотипу. Многие сантехники используют капиллярный и магнитопорошковый метод, который применим для всех видов трубной продукции, включая полиэтиленовые и полипропиленовые. Среди специалистов популярно средство Testex для проверки герметичности сварки.

Заключение

Из предложенных способов неразрушающего контроля все 4 варианта успешно используются на практике, но не обладают абсолютной универсальностью. Система контроля труб включает в себя все виды дефектоскопов для проведения работ. Некоторой степенью универсальности обладает ультразвуковой способ, а также методика, основанная на вихревых токах. Причем вихревой вариант оборудования обходится значительно дешевле.

Мониторинг технического состояния газопроводов является важной и ответственной задачей. Их повреждения и прорывы могут повлечь техногенные катастрофы с серьезными экологическими последствиями, финансовыми убытками и сбоями в промышленной деятельности.

Сварные швы на стыках стальных секций в трубопроводах являются самым уязвимым местом конструкции. Причем их прочность не зависит от давности или новизны соединения. Они нуждаются в постоянном контроле герметичности.

Стенки труб менее уязвимы, но в процессе эксплуатации они подвергаются давлению и агрессивному воздействию от перегоняемых веществ изнутри и неблагоприятным внешним влияниям снаружи. В результате даже прочные материалы и надежные защитные покрытия со временем могут повреждаться, деформироваться, портиться и разрушаться.

Для мониторинга и своевременного обнаружения дефектов применяется ультразвуковой контроль трубопроводов. С его помощью можно обнаружить даже самые мелкие или скрытые несовершенства шовных соединений или стенок труб.

На чем основана эта технология?

В основе ультразвукового метода диагностики лежат акустические волновые колебания, неразличимые для слуха человека, их регистрация и приборный анализ. Эти волны проходят через металл с определенной скоростью. Если в нем содержатся пустоты, скорость меняется и определяется приборами, как и отклонения в движении волнового потока из-за встречаемых препятствий или мест структурной неоднородности материала. По характеристикам акустических волн также можно понять форму и размеры дефектов, их расположение.

Как осуществляется ультразвуковой контроль газопроводов?

При проведении мониторинга в автоматическом режиме используются инфразвуковые системы, работающие на основе аппаратных и программных методов. Приборы для сбора акустической информации, установленные группами вдоль трубопровода на определенном расстоянии друг от друга, передают ее по каналам связи в диспетчерские пункты для интеграции, обработки и анализа. Фиксируются количество, координаты и параметры обнаруженных изъянов или утечек. Результаты сигналов отслеживаются специалистами на мониторе.

Автоматизированная инфразвуковая система мониторинга трубопроводов позволяет осуществлять постоянную дистанционную проверку их работы, контроль и управление в реальном времени с возможностью диагностики труднодоступных участков и отсеков газораспределения, с использованием сочетания одновременно нескольких методов мониторинга для большей точности результата и оперативного обнаружения дефектов, выявления утечек. Это современное оборудование высокого класса.

К системе могут быть также подключены датчики давления, температуры, расходомеры и измерители других параметров для получения информации о технологических процессах, происходящих в трубопроводе.

Преимущества метода:

  • ультразвуковое обследование – это бережный и неразрушающий контроль трубопроводов,
  • имеет высокую чувствительность и диагностическую точность,
  • минимальное время для обнаружения утечек газа или других веществ,
  • возможность дистанционного наблюдения,
  • безопасность,
  • удобство и простота монтажа и эксплуатации системы,
  • обследование не останавливает и не влияет на процесс технической эксплуатации трубопровода,
  • подходит для всех видов материалов, из которых изготавливаются трубы,
  • может использоваться при наземной и подземной прокладке труб,
  • может осуществляться в любых климатических условиях,
  • выгодно по экономическим затратам.

Предложения нашей компании для проведения мониторинга трубопроводов.

Качественный мониторинг состояния трубопроводов – это гарантия их безопасной эксплуатации, надежной работы и страховка от ущерба. Он обеспечивается благодаря надежности и эффективности применяемого оборудования.

Компания СМИС Эксперт занимается разработкой диагностических приборов и систем мониторинга с использованием современных научных знаний и инновационных технологий. Применение таких систем на практике обеспечивает высокий уровень и точность контроля целостности магистральных трубопроводов, своевременное обнаружение любых видов дефектов и предотвращение возникновения чрезвычайных ситуаций.

Воспользуйтесь нашими услугами по профессиональной организации ультразвукового контроля газопроводов и других объектов повышенной значимости, когда нужен опыт, ответственный подход и безупречный результат.

Ждем ваших заявок!

В сфере строительства используются трубы диаметром от 28 до 1420 мм с толщиной стенки от 3 до 30 мм. По дефектоскопичности весь диапазон диаметров труб можно условно разбить на три группы:

  1. 28...100 мм и Н = 3...7 мм
  2. 108...920 мм и Н= 4...25 мм
  3. 1020...1420 мм и Н= 12...30 мм

Проведенные специалистами МГТУ им. Н.Э. Баумана исследования показывают, что необходимо учитывать анизотропию упругих свойств материала при разработке методик ультразвукового контроля сварных стыков труб.

Особенности анизотропии трубной стали.

Предполагается, что скорости распространения поперечных волн не зависят от направления прозвучивания и постоянны по сечению стенки трубы. Но при ультразвуковом контроле сварных соединений магистральных газопроводов, выполненных из зарубежных и российских труб, выявлены значительный уровень акустических шумов, пропуск крупных корневых дефектов, а также неправильная оценка их координат.

Установлено, что при соблюдении оптимальных параметров контроля и соблюдении процедуры его проведения основной причиной пропуска дефекта является наличие заметной анизотропии упругих свойств основного материала, что оказывает влияние на скорость, затухание, отклонение от прямолинейности распространения ультразвукового пучка.

Прозвучив металл более чем 200 труб по схеме, представленной на рис. 1, выявлено, что среднеквадратичное отклонение скорости волны при данном направлении распространения и поляризации составляет 2 м/с (для поперечных волн). Отклонения скоростей от табличных на 100 м/с и более не случайны и связаны скорее всего с технологией производства проката и труб. Отклонения в таких масштабах значительно влияют на распространение поляризованных волн. Помимо описанной анизотропии, выявлена неоднородность скорости звука по толщине стенки трубы.

Рис. 1. Обозначения наплавлений в металле трубы: X, Y, Z.- направления распространения ультразвука: х. у.z:- направления поляризации; Y- направление проката: Z- перпендикуляр к плоскости трубы

Листовой прокат обладает слоистой текстурой, представляющей собой в волокна металла и неметаллических включений, вытянутые в процессе деформации. Неодинаковые по толщине зоны листа подвержены различным деформациям в результате воздействия на металл термомеханического цикла прокатки. Это ведет к тому, что на скорость звука дополнительно влияет глубина залегания прозвучиваемого слоя.

Контроль сварных швов труб различного диаметра.

Трубы диаметром 28...100 мм.

Сварные швы у труб диаметром от 28 до100 мм и высотой от 3 до 7 мм имеют такую особенность как образование провисаний внутри трубы, это при контроле прямым лучом приводит к появлению на экране дефектоскопа ложных эхо-сигналов, которые совпадают по времени с эхо-сигналами, отраженными от надкорневых дефектов, которые обнаруживаются однократно отраженным лучом. Так как эффективная ширина пучка соразмерна с толщиной стенки трубы, то отражатель обычно не удается найти по местоположению искателя относительно валика усиления. Также имеет место также наличие неконтролируемой зоны в центре шва из-за большой ширины валика шва. Все это ведет к тому, что вероятность обнаружения недопустимых объемных дефектов невелика (10-12%), но недопустимые плоскостнные дефекты определяются гораздо надежнее (~ 85 %). Главные параметры провисания (ширина, глубина и угол смыкания с поверхностью изделия) считаются случайными величинами для данного типоразмера труб; средние значения параметров составляют 6,5 мм; 2,7 мм и 56°30" соответственно.

Прокат ведет себя как неоднородная и анизотропная среда с достаточно сложными зависимостями скоростей упругих волн от направления прозвучивания и поляризации. Изменение скорости звука близко симметрично относительно середины сечения листа, причем вблизи этой середины скорость поперечной волны может значительно (до 10 %) уменьшаться относительно окружающих областей. Скорость поперечной волны в исследуемых объектах меняется в диапазоне 3070...3420 м/с. На глубине до 3 мм от поверхности проката вероятно незначительное (до 1 %) увеличение скорости поперечной волны.

Помехоустойчивость контроля значительно усиливается при использовании наклонных раздельно-совмещенных ПЭП типа РСН (рис. 2), названных хордовыми. Они были созданы в МГТУ им. Н.Э. Баумана. Особенность контроля состоит в том, что при выявлении дефектов не нужно поперечноге сканирование, оно нужно только по периметру трубы при прижатии к шву передней грани преобразователя.

Рис. 2. Наклонный хордовый РСН-ПЭП: 1- излучатель: 2 - приемник

Трубы диаметром 108...920 мм.

Трубы диаметром 108-920 мм и с Н в диапазоне 4-25 мм также совершают односторонней сваркой без обратной подварки. До последнего времени контроль над этими соединениями контролировались совмещенными ПЭП по методике, изложенной для труб диаметром 28-100 мм. Но известная методика контроля предполагает наличие существенно большой зоны совпадений (зоны неопределенности).Это ведет к незначительности достоверности оценки качества соединения. Совмещенные ПЭП обладают высоким уровнем реверберационных шумов, осложняющих расшифровку сигналов, и неравномерность чувствительности, которую не всегда получается компенсировать имеющимися средствами. Использование хордовых раздельно-совмещенных ПЭП для контроля данного типоразмера сварных соединений не эффективно в связи с тем, что из-за ограниченности значений углов ввода ультразвуковых колебаний с поверхности сварного соединения габариты преобразователей несоразмерно увеличиваются, увеличивается и площадь акустического контакта.

Созданные в МГТУ им. Н.Э. Баумана наклонные ПЭП с выравненной чувствительностью используются для контроля сварных стыков диаметром более 10 см. Выравнивание чувствительности добиваются выбором угла разворота 2 так, чтобы середина и верхняя часть шва прозвучивались центральным однократно отраженным лучом, а нижняя часть обследовалась прямыми периферийными лучами, падающими на дефект под углом Y, от центрального. На рис. 3. изображен график зависимости угла ввода поперечной волны от угла разворота и раскрытия диаграммы направленности Y. Здесь в ПЭП падающая и отраженная от дефекта волны горизонтально поляризованные (SН -волна).

Рис. 3. Изменение угла ввода альфа, в пределе половины угла раскрытия диаграммы направленности РСН-ПЭП в зависимости от угла разворота дельта.

Из графика видно, что при контроле изделий Н =25 мм неравномерность чувствительности РС-ПЭП может составлять до 5 дБ, а для совмещенного ПЭП она может достигнуть 25 дБ. РС-ПЭП обладает повышенным уровнем сигнала и имеет повышенную абсолютную чувствительность. РС-ПЭП четко выявляется зарубка площадью 0,5 мм2 при контроле сварного соединения толщиной 1 см как прямым, так и однократно отраженным лучом при отношении полезный сигнал/помеха 10 дБ. Процесс проведения контроля рассмотренными ПЭП аналогичен процедуре проведения совмещенным ПЭП.

Трубы диаметром 1020...1420 мм.

Для выполнения сварных стыков труб диаметром от 1020 и 1420 мм с Н в диапазоне от 12 до30 мм используют двустороннюю сварку или сварку с подваркой обратного валика шва. В швах, сделанных двусторонней сваркой чаще всего ложные сигналы от задней кромки валика усиления имеют меньшую помеху, чем в односторонних швах. Они меньше по амплитуде из-за более плавных очертаний валика и дальше по развертке. В связи с этим для дефектоскопии это наиболее удобный типоразмер труб. Но проведенные в МГТУ им. Н.Э. Баумана исследования показывают, что металл этих труб характеризуется наибольшей анизотропией. В целях минимизации влияния анизотропии на выявляемость дефектов лучше всего использовать ПЭП на частоту 2,5 МГц с углом призмы 45°, а не 50°, как советуется в большинстве нормативных документов на контроль подобных соединений. Более высокая достоверность контроля достигнута при применении ПЭП типа РСМ-Н12. Но в отличие от способа, изложенного для труб диаметром 28-100 мм, при контроле данных соединений нет зоны неопределенности. В остальном принцип контроля остается таким же. При применении РС-ПЭП настройку скорости развертки и чувствительности рекомендуется производить по вертикальному сверлению. Настройка скорости развертки и чувствительности наклонных совмещенных ПЭП должна производится по угловым отражателям соответствующего размера.

Осуществляя контроль сварных швов необходимо помнить что в околошовной зоне могут случаться расслоения металла, которые усложняют определение координат дефекта. Зону с найденным наклонным ПЭП дефектом необходимо проверить прямым ПЭП для уточнения особенностей дефекта и выявления истинного значения глубины дефекта.

В нефтехимической промышленности, атомной энергетике для производства трубопроводов, сосудов нашли широкое применение плакированные стали. В качестве плакировки внутренней стенки таких конструкций берутся аустенитные стали наносимые методом наплавки, прокатки или взрыва толщиной в 5-15 мм.

Метод контроля данных сварных соединений предуполагает оценку сплошности перлитной части сварного шва, в том числе и зоны сплавления с восстановительной антикоррозионной наплавкой. Сплошность тела самой наплавки контролю не подлежит.

Но из-за отличия акустических качеств основного металла и аустенйтной стали от границы раздела при узи контроле появляются эхо-сигналы, образующие помехи обнаружению таких дефектов, как отслоений плакировки и поднаплавочных трещин. Наличие плакировки значительно влияет на параметры акустического тракта ПЭП.

В связи с этим для проведения контроля толстостенных сварных швов плакированных трубопроводов стандартные технологические решения не дают должного результата.

Многолетний исследования ряда специалистов: В.Н. Радько, Н.П. Разыграева, В.Е. Белого, В.С. Гребенника и др позволили определить главные особенности акустического тракта, разработать рекомендации по оптимизации его параметров, создать технологию узи контроля сварных швов с аустенитной плакировкой.

В работах специалистов установлено, что при переотражении пучка ультразвуковых волн от границы перлит-аустенитная плакировка диаграмма направленности почти не именяется в ситуации плакировки прокаткой и значительно деформируется в случае осуществления плакировки наплавкой. Ее ширина резко возрастает, а в пределах главного лепестка появляются осцилляции в 15-20 дБ в зависимости от типа наплавки. Имеет место быть значительное смещение точки выхода отражения от границы плакировки пучка по сравнению с его геометрическими координатами и перемена скорости поперечных волн в переходной зоне.

С учетом этих особенностей технология контроля сварных соединений плакированных трубопроводов предполагает предварительное обязательное измерение толщины перлитной части.

Лучшего нахождения плоскостных дефектов (трещин и несплавлений) достигается при помощи применения ПЭП с углом ввода 45° и на частоты 4 МГц. Лучшая выявляемость вертикально ориентированных дефектов на угле ввода 45° по сравнению с углами 60 и 70° обусловлена тем, что при прозвучивании последними угол встречи пучка с дефектом близок к 3-му критическому, при котором коэффициент отражения поперечной волны является наименьшим.

На частоте 2 МГц при прозвучивании снаружи трубы эхо-сигналы от дефектов экранируются интенсивным и длительным сигналом шума. Помехоустойчивость ПЭП на частоту 4 МГц в среднем на 12 дБ выше, а значит полезный сигнал от дефекта, располагающегося в непосредственной близости от границы наплавки, станет лучше разрешаться на фоне помех.

При прозвучивании изнутри трубы через наплавку максимальная помехоустойчивость устанавливается при настройке ПЭП на частоту 2 МГц.

Метод контроля сварных швов трубопроводов с наплавкой регламентируется руководящим документом Госатомнадзора РФПНАЭГ-7-030-91.