Межзвездный перелет. Межзвёздные полёты


Космическая ракета, доставившая в ночь с 13 на 14 сентября 1959 г. вымпел Советского Союза на Луну, прош­ла свой путь за 1,5 суток. Приблизительно столько же времени понадобилось американской космической ракете, произведшей в июле 1964 г. перед падением на поверх­ность Луны фотографирование лунных ландшафтов с близких расстояний. При будущих полетах человека на Луну фактор времени не будет играть большой роли. Длительность этого космического путешествия будет меньше длительности многих путешествий по земным маршрутам.

Но уже при планировании полетов на планеты вопрос длительности путешествия становится важным. Чтобы до­стичь Венеры с наименьшей затратой горючего, необходимо около 150 суток, а для достижения Марса около 260 суток. Разумеется, когда будут использованы более эффективные средства тяги, чем те, которые применяются в космических ракетах наших придерживаться маршрута с наименьшей затратой энер­гии отпадет, время путешествия на планеты можно будет значительно сократить. В принципе, жителю Земли будет возможно значительную часть своего месячного отпуска проводить на одной из соседних планет.

Совершенно иначе выглядит проблема полетов к дру­гим звездам и другим галактикам. Здесь расстояния столь огромны, что фактор времени приобретает решающее значение.

Скорость космической ракеты на различных участках пути ограничивается предельным ускорением, которое способны длительное время переносить пассажиры. Кромеe того, скорость ракеты не может достичь скорости света.

Если ракета будет двигаться с постоянным ускорени­ем 10 м/с 2 , то пассажиры будут чувствовать себя пре­восходно. Состояния невесомости не будет, люди будут стоять на дне кабины ракеты точно так же, как они это делали в различных помещениях при обычной жизни на Земле, и будут испытывать совершенно те же физиче­ские ощущения, в том числе и ощущение того же веса отдельных частей своего тела и веса других предметов. Это объясняется тем, что ускорение силы тяжести на Земле также равно 10 м/с 2 (точнее, 9,81 м/с 2).

Но для уменьшения длительности полета нужна воз­можно большая скорость и, следовательно, возможно большее ускорение. По-видимому, здоровые люди могут длительное, время удовлетворительно переносить посто­янное ускорение в 20 м/с 2 . При таком ускорении ракеты вес пассажира, измеренный в кабине при помощи пру­жинных весов, был бы вдвое больше того, который он имел на Земле. Иначе говоря, пассажир чувствовал бы себя так же, как и на поверхности такой планеты, на которой ускорение силы тяжести и, значит сила тяже­сти, вдвое больше, чем на Земле. Дополнительная нагрузка к обычному весу будет при этом равномерно рас­пределяться по всему организму человека, ее будет зна­чительно легче переносить, чем груз, равный весу челове­ка, взваленный на его плечи. Итак, будем исходить из возможного постоянного ускорения 20 м/с 2 .

При таком ускорении на огромных расстояниях ско­рость может достичь очень больших величин. А при больших скоростях классические законы механики, зако­ны Ньютона, становятся неверными. Необходимо исполь­зовать законы, даваемые теорией относительности Эйн­штейна, которые верны для любых скоростей, и малых и больших.

Для выполнения расчетов нам удобнее принять, что во все время движения постоянным остается отношение силы тяги ракеты к ее массе и это отношение равно

Если бы при космических полетах к звездам и галак­тикам действовала классическая механика, то во все вре­мя движения ускорение а было бы постоянным и было бы справедливо равенство

Однако классическая механика неверна, теория относительности дает следующую форму для мгновенного ускорения:

где υ -скорость космической ракеты в данный момент, а с -скорость света. При очень малых значениях скоро­сти υ в сравнении со скоростью света формулы (60) и (61) практически дают одно и то же, но когда υ/с не очень мало, формула (60) уже неверна.

Если бы движение происходило по законам класси­ческой механики, ускорение было бы постоянным и рав­ным b. Тогда скорость υ и пройденный путь S через вре­мя t после начала движения определялись бы известными из школьного курса физики формулами

Но, как мы видим, согласно формуле (58) по мере роста скорости ускорение будет уменьшаться. Вследствие это­го формулы для скорости и пройденного пути в момент t, даваемые релятивистской механикой, т. е. механикой, основанной на теории относительности, другие и имеют следующий вид:

В классической механике предполагалось, что ско­рость тела может становиться сколь угодно большой. Это следует и из формулы (62), в которой по мере увеличе­ния времени tможет неограниченно возрастать и ско­рость υ. Одной из важнейших основ релятивистской ме­ханики является закон невозможности в природе скоро­cти, большей скорости света. Если в формуле (64) неогра­ниченно увеличивать время t, то скорость υ станет расти неограничено: она будет приближаться к скорости света, но никогда не превзойдет ее.

Самым поразительным выводом теории относительно­сти является утверждение, что ход времени в двух дви­жущихся одна относительно другой системах различен. Именно, если в начальный момент, когда космическая ракета покоилась на поверхности Земли, ход времени для ее пассажиров и ход времени для жителей Земли был одинаков, то после того как ракета станет двигаться, ход времени в ней замедлится. Малому промежутку времени t 2 - t 1 на Земле будет соответствовать малый промежуток времени в ракете τ 2 - τ 1 равный

Формула (63) ведет к удивительным выводам. Если космонавты, покинув Землю, будут совершать полеты на больших скоростях, а затем возвратятся на Землю, то окажется, что от разлуки и до встречи времени у них прошло существенно меньше, чем у жителей Земли. Один из близнецов, путешествовавший в космосе, после возвращения окажется моложе близнеца, остававшегося на Земле. Более того, отец, оставивший на Земле малолет­него сына и совершивший космическое путешествие на больших скоростях, может после возвращения на Землю, оставаясь сам еще сравнительно молодым человеком, за­стать сына дряхлым стариком.

В 1895 г. Г. Уэллс написал роман «Машина времени». Из всех фантастических романов писателя этот роман казался самым фантастическим. Однако, как мы видим, путешествие во времени все-таки оказывается возмож­ным. Машиной времени должна служить космическая ракета, развивающая большие скорости в пространстве. Но путешествовать во времени можно только в направле­нии будущего. Путешественник во времени Уэллса мог достичь страны будущего, где жили «элои» и «морлоки», но он не смог бы после этого возвратиться назад, как и не смог бы посетить страну прошлого.

Если движение происходит с постоянным, как мы приняли отношением b силы тяги ракеты к ее массе, то из соотношения (66) можно получить связь между вре­менем t,прошедшим на Земле, и временем τ, прошедшим у космонавтов,

где Агsh есть особая функция, обратная так называемо­му гиперболическому синусу. Таблицы этой функции приводятся во многих математических справочниках. Ка­ким бы не было t по формуле (67) τ получается всегда меньше t причем чем больше t тем существеннее раз­личие между τ и t. Этот эффект иногда называют реля­тивистским расширением времени.

Различие хода времени в движущихся одна относительно другой системах не только предсказано теорией относительности, но и подтверждено в наши дни экспериментами. Например, доказано, что у мюонов (так называются быстро распадающиеся элементарные частицы с массой, равной 207 массам электрона, и единичным положительным или отрицательным зарядом), движущихся медленно, среднее время, протекающее до распада, равно 2,22 10-6 с, а у мюонов космических лучей, движущихся с очень большой скоростью, время распада больше, в
точном соответствии с формулой (67).

В таблице для различных расстояний вычислено вре­мя, необходимое для прохождения их ракетой, у кото­рой отношение силы тяги к массе все время постоянно и равно 20 м/с 2 . Во втором столбце приведено время, которое давала бы классическая механика по формуле (63). На самом деле движение ракеты не будет происхо­дить по законам классической механики, так как дости­гаемые скорости очень большие. По формуле (62) они к тому же получаются во много раз больше скорости света, и мы приводим этот столбец только для того, чтобы по­казать, насколько ошибочны результаты, классической механики в подобных случаях. В третьем столбце вычис­лено время, которое пройдет на Земле до момента дости­жения ракетой указанного расстояния. При b = 20 м/с 2 ракета уже на расстоянии 1/2 пс разовьет скорость, очень близкую к скорости света, и потому на расстояниях во много парсек время, требуемое для полета ракеты, прак­тически равно времени нужному для прохождения света, следовательно, начиная с пятой строки данные в третьем столбце численно равны количеству световых лет в указанном расстоянии.

Но иной промежуток времени будет проходить у пас­сажиров ракеты. Особенно разительно различие для боль­ших расстояний. Так как на больших расстояниях ракета успеет развить скорость очень близкую к скорости света, релятивистское расширение времени будет особен­но велико.

Пользуясь данными таблицы, представим себе путе­шествие к ближайшей нашему Солнцу звезде - а Цен­тавра. На самом деле это тройная звезда. Главный компонент - звезда спектрального класса G4 с абсолютной величиной + 4 m ,7 - двойник нашего Солнца: почти те же спектр, цвет, светимость, масса. Второй компонент имеет спектральный класс К1 (оранжевая звезда), а аб­солютную звездную величину 6 m ,1, светимость ее вдвое меньше, чем у Солнца. Третий компонент носит назва­ние Проксима, т. е. «ближайшая» Центавра. Он чуть ближе к нам, чем два других компонента этой тройной системы, и из наблюдаемых пока звезд является самым близким соседом Солнца. Светимость его очень мала: в 10000 раз меньше, чем у Солнца (М= 15 m ,7). Спектраль­ный класс - М, значит, это красная звездочка, красный карлик.

Эта тройная система, состоящая из желтой, оранже­вой и красной звезд, находится на расстоянии 1,32 пс. Во время путешествия к ней нужно сначала полпути, т. е. 0,66 пс, двигаться с ускорением. На это расстояние ракета потратит, как можно подсчитать при помощи фор­мулы (65), 2,58 земных года, а при помощи формулы (67) мы узнаем, что в ракете протечет 1,13 года. Затем нужно будет, используя ту же силу тяги ракеты, двигаться с замедлением. Тогда к моменту достижения тройной звез­ды а Центавра ракета остановится.

Характер движения на второй половине пути до а Центавра будет как бы симметричным отражением дви­жения на его первой половине. В любых двух точках, одинаково удаленных от середины пути, скорость ока­жется одинаковой. Поэтому и время, затраченное на вто­рую половину пути, будет как на Земле, так и в ракете, то же самое, что и для первой половины пути.

После этого ракета двинется обратно к Земле, снова сначала ускоряя движение, а затем, после прохождения половины пути, замедляя его. К моменту возвращения на Землю у пассажиров в ракете пройдет 1,13 · 4 ≈ 4,5 го­да. Но они убедятся в том, что, на Земле к моменту их прибытия прошло уже 2,58 · 4 ≈ 10 лет.

Для посещения звезды, находящейся на расстоянии 20 пс, например а Треугольника, и возвращения обрат­но, ракете нужна пройти с попеременным ускорением и замедлением движения четыре отрезка, длиною 10 пс каждый. Согласно таблице выше к моменту возвращения у пассажиров ракеты пройдет 2,33 · 4 ≈ 9 лет. Но призем­ляясь, пассажиры ракеты не узнают страны, которую ос­тавили: так велики будут перемены. Они не застанут никого из людей, кого знали - на Земле к моменту при­бытия пройдет 32,9· 4≈ 130 лет и успеют смениться несколько поколений.

Полет к туманности Андромеды, NGC 224, находящей­ся на расстоянии 460 кпс, и возвращение будут проте­кать совсем не так, как это описано в интересной книге И. А. Ефремова «Туманность Андромеды». Путешествие займет у космонавтов около 30 лет, а возвратятся они фактически в другой мир,- на Землю, на которой от на­чала полета прошло около 30 млн. лет.

Огромная экономия времени, протекающего в раке­те, в сравнении со временем, протекающим на Земле, достигается благодаря тому, что подавляющую часть

расстояния ракета движется со скоростью, очень близ­кой к скорости света. В таком случае, как показывает формула (66), промежуток времени τ 2 - τ 1 может быть очень мал в сравнении с промежутком времени t 2 - t 1 .

Вообще таблица показывает, что если обеспечить в течение всего времени постоянное отношение силы тяги ракеты к ее массе, равное 20 м/с 2 , то человеку доступно посещение любых областей обозреваемой нами Вселенной. Даже для достижения отдаленнейших скоплений галак­тик, расположенных на расстоянии 1000 Мпс, потребует­ся только 11 лет «ракетного» времени. Разумеется, воп­рос о возвращении на Землю для таких космических странников окажется лишенным смысла. Разве лишь будет интересно узнать, что произошло с Землей и Сол­нечной системой. Разумнее будет искать годный для оби­тания мир на новых местах.

Все предыдущие расчеты выполнялись в предположе­нии, что можно обеспечить в течение всего, рассматривае­мого времени постоянное отношение силы тяги ракеты к ее массе, равное 20 м/с 2 . Посмотрим теперь, можно ли этого практически добиться? Что покажет энергетический расчет? Легко убедиться, что применяемые в наше время двигатели космических ракет, сжигающие химическое топливо, совершенно непригодны для путешествий к звездам и галактикам.

Важнейшую роль играет скорость ω, с которой обра­зующиеся при сгорании газы вылетают из сопла ракеты. Чем больше эта скорость, тем большее ускорение в противоположном направлении будет иметь ракета. Скорость вылетания газов тем больше, чем выше, температура сго­рания. Температура же ограничивается способностью ма­териала, из которого сделано сопло ракеты, противосто­ять высокой температуре, не плавиться. По-видимому, пределом в этом отношении являются 4000 К. При такой температуре сгорания от некоторых видов топлив можно получить скорость вылета ω около 4 км/с.

В астронавтике известна формула

связывающая m 0 - массу ракеты с топливом, m- мас­су ракеты после сгорания топлива, ω - скорость вылета газов из сопла и υ -скорость, которую приобретет ракета после того как сгорит топливо. Формула эта верна только в рамках классической механики, когда и скорость вылетающих газов и скорость, достигаемая ракетой, очень малы в сравнении со скоростью света. Оба эти условия в данном расчете соблюдаются.

Мы видим, что величина достигаемой ракетой скоро­сти тем больше, чем больше отношение массы ракеты с топливом к ее массе без топлива. Но как велико может быть это отношение? Предположим маловероятное, что удалось построить такую ракету, в которой 0,999999 мас­сы составляет горючее, так что вес после израсходования горючего составит только одну миллионную веса ракеты на старте. Тогда правая часть равенства (68) будет равна 13,8 и, следовательно, если скорость вылета газов равна 4 км/с, ракета сможет достичь скорости 55,2 км/с. Пока не достигнуты очень большие скорости и можно пользо­ваться классической, механикой, постоянное отношение силы тяги к массе ракеты 20 м/с 2 равно ускорению раке­ты. Скорость 55,2 км/с будет достигнута через 2760 с, когда пройденный путь окажется равным 76 000 км. После этого расстояния топливо будет исчерпано, устрой­ство ракеты перестанет действовать.

Таким образом, употребляемый в настоящее время в космонавтике способ сообщения ракете тяги при помощи сгорания химического топлива не может быть применен для полета к звездам и галактикам. Он годен только в пределах Солнечной системы.

Формула (68) показывает, что основная задача состоит в нахождении такого метода создания реактивной тяги, при котором вылетающие частицы имели бы гораздо большую скорость, чем у современных ракет. Нужно, чтобы эта скорость была сравнима со скоростью света или даже равна ей. Идея такой ракеты предложена дав­но. Роль вылетающих из ракеты в определенном направ­лении частиц должны играть частицы света - фотоны, а ракета будет двигаться в противоположном направле­нии. Источником излучения могут быть ядерные реакции и другие процессы, при которых происходит выделение электромагнитной энергии. Трудности связаны с необходимостью получить мощный поток фотонов при сравни­тельно небольшом весе устройства, чтобы употреблявшая­ся в наших расчетах величина b была достаточной. Кро­ме того, нужно оградить устройство от разрушающего действия высоких температур. Пока такой источник энергии не создан. Но он, по-видимому, будет создан.

Чтобы совершить полет до ближайшего соседа, трой­ной звезды а Центавра, и вернуться обратно, можно пред­ложить следующий план. Фотонная ракета движется с ускорением b = 20 м/с 2 , пока ее масса не станет равной половине первоначальной. При этом согласно формулам (69) и (70) будет пройдено расстояние 0,073 пс и разви­та скорость 180000 км/с. После этого двигатель выклю­чается и ракета движется по инерции. Когда в свободном движении будет пройдено около 1,17 пс и до цели останется 0,073 пс, двигатель снова включается, но уже на торможение. Ракета остановится около а Центавра, из­расходовав еще половину той массы, которая у нее име­лась при начале торможения. В той же последователь­ности должен быть проделан обратный путь. Двигатель будет включаться всего четыре раза, каждый раз расхо­дуя половину имеющейся массы, так что отношение m 0 /m к моменту прибытия на Землю должно составить 16. Расчет показывает, что от момента вылета до момен­та возвращения в ракете протечет около 9,5 лет, а на Земле 16,5 лет.

Можно, конечно, совершать подобные полеты и к бо­лее далеким звездам, увеличивая участок пути с выклю­ченным двигателем. Но тогда с увеличением расстояния будет существенно увеличиваться время, протекающее в ракете.

При полётах на расстояния свыше 5 пс чрезвычайно важно развивать, насколько возможно, высокие скорости, близкие к скорости света; тогда не только уменьшается требуемое для совершения полета время, протекающее на Земле, но, что особенно важно, в очень сильной степе­ни уменьшается время, протекающее в ракете. А чтобы развить, насколько возможно, высокие скорости, двига­тель должен быть постоянно включенным.

Из формулы (69) следует, что, доведя отношение m 0 /m до 200, можно с постоянно включенным, поставлен­ным только на ускорение двигателем достичь звезды Ка­пеллы, удаленной приблизительно на 14 пс.

Но если бы мы хотели, не включая двигателя, разго­няясь полпути и полпути замедляя полет, долететь до Капеллы, повернуть обратно и возвратиться на Землю, то пришлось бы затратить столько энергии, что отношение m 0 /m потребовалось бы довести до 10 8 , что, конечно, не­мыслимо даже для техники будущего.

Точно так же весьма мало вероятна возможность про­стого достижения (без возвращения) человеком других галактик. При путешествии с постоянно включенным двигателем, чтобы покрыть расстояние до Магеллановых Облаков, нужно, чтобы m 0 /m было равно 6 10 5 .

Рассуждения и подсчеты, проведенные в этой публикации, привели нас к следующим выводам: 1) соотношение двух факторов - длительности жизни и способности перено­сить ускорение, у человека таково, что он в принципе мог бы совершить путешествие до любых, даже самых отдаленных из наблюдаемых тел Вселенной; 2) техниче­ские, энергетические ограничения резко сужают возмож­ности человека. Даже использование в будущем фотон­ной ракеты с очень большим отношением начальной и конечной масс позволит совершать полеты с возращени­ем только до нескольких самых близких звезд. Расстоя­ния в несколько десятков парсек могут быть доступны при отношениях m 0 /m порядка нескольких сотен. Однако это могут быть лишь полеты без возвращения; 3) достижение других галактик никогда не будет доступно человеку.

В тысячах фантастических романов описаны гигантские фотонные звездолеты размером с небольшой (или большой) город, уходящие в межзвездный полет с орбиты нашей планеты (реже — с поверхности Земли). Но по замыслу авторов проекта Breakthrough Starshot все будет происходить совсем не так: в один знаменательный день две тысячи какого-то года к одной из ближайших звезд, альфе Центавра, стартует не один и не два, а сразу сотни и тысячи маленьких звездолетиков размером с ноготь и массой в 1 г. И у каждого из них будет тончайший солнечный парус площадью в 16 м 2 , который и понесет звездолет со все возрастающей скоростью вперед — к звездам.

Такелаж. Для сохранения формы паруса предполагается армировать его графеном. Некоторые композитные материалы на основе графена могут сокращаться под действием приложенного электрического напряжения для активного управления. Для стабилизации парус можно раскрутить или придать ему форму обратного конуса для пассивной самостабилизации в поле лазерного излучения. Солнечный парус. Один из главных элементов проекта — солнечный парус площадью в 16 м² и массой всего 1 г. В качестве материала паруса рассматриваются многослойные диэлектрические зеркала, отражающие 99,999% падающего света (по предварительным расчетам этого должно хватить, чтобы парус не расплавился в поле излучения 100-ГВт лазера). Более перспективный подход, позволяющий сделать толщину паруса меньшей длины волны отражаемого света, — это использование в качестве основы паруса монослоя метаматериала с отрицательным показателем преломления (такой материал к тому же имеет наноперфорацию, что еще уменьшает его массу). Второй вариант — это использование материала не с высоким коэффициентом отражения, а с низким коэффициентом поглощения (10−9), такого как оптические материалы для световодов.

«Выстрел к звёздам»

Основой проекта Breakthrough Starshot стала статья профессора физики Калифорнийского университета в Санта-Барбаре Филипа Любина «План для межзвездных полетов» (A Roadmap to Interstellar Flight). Основная заявленная цель проекта состоит в том, чтобы сделать межзвездные полеты возможными уже при жизни следующего поколения людей, то есть не через столетия, а через десятилетия.

Полетный план

1. Ракета выводит на околоземную орбиту материнский корабль, содержащий десятки, сотни, тысячи или десятки тысяч зондов. 2. Зонды покидают материнский корабль, разворачивают паруса, ориентируются и занимают стартовую позицию. 3. На Земле начинает работать фазированный массив размерами 1 х 1 км из 20 млн небольших (с апертурой в 20−25 см) лазерных излучателей, фокусирующий лазерный луч на поверхности паруса. 4. Для компенсации атмосферных искажений используются опорные бакены — «искусственные звезды» в верхних слоях атмосферы, на материнском корабле, а также отраженный сигнал от паруса. 5. Зонд разгоняется лазерным лучом в течение нескольких минут до 20% от скорости света, ускорение при этом достигает 30 000 g. На протяжении всего полета, который продлится около 20 лет, лазер периодически отслеживает положение зонда. 6. По прибытии к цели, в систему Альфа Центавра, зонды пытаются обнаружить планеты и сделать их снимки во время пролета. 7. Используя парус как линзу Френеля и лазерный диод в качестве передатчика, зонд ориентируется и передает полученные данные в направлении Земли. 8. Через пять лет на Земле принимают эти данные.

Сразу после официального анонса программы Starshot на авторов проекта обрушилась волна критики со стороны ученых и технических специалистов в различных областях. Критически настроенные эксперты отмечали многочисленные некорректные оценки и просто «белые пятна» в плане программы. Некоторые замечания были приняты во внимание, и план полета был несколько скорректирован в первой итерации.


Итак, межзвездный зонд будет представлять собой космический парусник с электронным модулем StarChip массой 1 г, соединенным сверхпрочными стропами с солнечным парусом площадью 16 м 2 , толщиной 100 нм и массой 1 г. Конечно, света нашего Солнца недостаточно, чтобы разогнать даже столь легкую конструкцию до скоростей, при которых межзвездные путешествия не будут длиться тысячелетиями. Поэтому главная изюминка проекта StarShot — это разгон с помощью мощного лазерного излучения, которое фокусируется на парусе. По оценкам Любина, при мощности лазерного луча 50−100 ГВт ускорение составит около 30 000 g, и за несколько минут зонд достигнет скорости в 20% световой. Полет к альфе Центавра продлится около 20 лет.


Под звёздными парусами

Одна из ключевых деталей проекта — это солнечный парус. В исходном варианте площадь паруса изначально составляла всего 1 м 2 , и из-за этого он мог не выдержать нагрева при разгоне в поле лазерного излучения. Новый вариант использует парус площадью 16 м 2 , так что тепловой режим будет хотя и довольно жестким, но, по предварительным оценкам, не должен расплавить или разрушить парус. Как пишет сам Филип Любин, в качестве основы для паруса планируется использовать не металлизированные покрытия, а полностью диэлектрические многослойные зеркала: «Такие материалы характеризуются умеренным коэффициентом отражения и чрезвычайно низким поглощением. Скажем, оптические стекла для волоконной оптики рассчитаны на большие световые потоки и имеют поглощение порядка двадцати триллионных на 1 мкм толщины». Добиться хорошего коэффициента отражения от диэлектрика при толщине паруса в 100 нм, а это много меньше длины волны, непросто. Но авторы проекта возлагают некоторые надежды на использование новых подходов, таких как монослои метаматериала с отрицательным показателем преломления. «Кроме того, нужно учитывать, что отражение от диэлектрических зеркал настраивается на узкий диапазон длин волн, а по мере ускорения зонда эффект Доплера сдвигает длину волны более чем на 20%, — говорит Любин. — Мы это учитывали, поэтому отражатель будет настроен примерно на двадцатипроцентную ширину полосы излучения. Мы спроектировали такие отражатели. Если необходимо, доступны и отражатели с большей шириной полосы».


Юрий Мильнер, российский бизнесмен и меценат, основатель фонда Breakthrough Initiatives: За последние 15 лет произошли существенные, можно сказать, революционные продвижения по трем технологическим направлениям: миниатюризация электронных компонентов, создание нового поколения материалов, также удешевление и увеличение мощности лазеров. Сочетание этих трех тенденций приводит к теоретической возможности разогнать наноспутник до почти релятивистских скоростей. На первом этапе (5−10 лет) мы планируем провести более углубленное научно-инженерное исследование, чтобы понять, насколько этот проект реализуем. На сайте проекта есть список из примерно 20 серьезных технических проблем, без решения которых мы не сможем идти дальше. Это не окончательный список, но, опираясь на мнение научного совета, мы считаем, что первый этап проекта имеет достаточную мотивацию. Я знаю, что проект звездного паруса подвергается серьезной критике со стороны специалистов, но думаю, что позиция некоторых критически настроенных экспертов связана с не совсем точным пониманием того, что же мы реально предлагаем. Мы финансируем не полет к другой звезде, а вполне реалистичные многоцелевые разработки, связанные с идеей межзвездного зонда лишь общим направлением. Эти технологии найдут применение и для полетов в Солнечной системе, и для защиты от опасных астероидов. Но постановка столь амбициозной стратегической цели, как межзвездный полет, представляется оправданной в том смысле, что развитие технологий за последние 10−20 лет, вероятно, делает реализацию подобного проекта вопросом не веков, как многие предполагали, а скорее — десятилетий.

Лазерная установка

Основная силовая установка звездолета не полетит к звездам — она будет расположена на Земле. Это наземная фазируемая решетка лазерных излучателей размером 1х1 км. Суммарная мощность лазеров должна составлять от 50 до 100 ГВт (это эквивалентно мощности 10−20 Красноярских ГЭС). Предполагается с помощью фазирования (то есть изменения фаз на каждом отдельном излучателе) сфокусировать излучение с длиной волны 1,06 мкм со всей решетки в пятно диаметром несколько метров на расстояниях вплоть до многих миллионов километров (предельная точность фокусировки 10−9 радиана). Но такой фокусировке сильно мешает турбулентная атмосфера, размывающая луч в пятно размером примерно в угловую секунду (10−5 радиана). Улучшения на четыре порядка предполагается достичь с помощью адаптивной оптики (АО), которая будет компенсировать атмосферные искажения. Лучшие системы адаптивной оптики в современных телескопах уменьшают размытие до 30 угловых миллисекунд, то есть до намеченной цели остается еще примерно два с половиной порядка.



Филип Любин в своей статье приводит численные оценки пунктов плана, однако многие ученые и специалисты относятся к этим данным весьма критически. Конечно, для проработки столь амбициозного проекта, как Breakthrough Starshot, требуются годы работы, да и $100 млн — не такая уж и большая сумма для работы подобного масштаба. В особенности это касается наземной инфраструктуры — фазированной решетки лазерных излучателей. Установка такой мощности (50−100 ГВт) потребует гигантского количества энергии, то есть рядом нужно будет построить как минимум десяток крупных электростанций. Помимо этого, потребуется отводить от излучателей огромное количество тепла на протяжении нескольких минут, и как это делать — пока что совсем неясно. Таких вопросов без ответов в проекте Breakthrough Starshot огромное количество, однако пока что работа только началась. «В научный совет нашего проекта входят ведущие специалисты, ученые и инженеры в различных релевантных областях, включая двух нобелевских лауреатов, — говорит Юрий Мильнер. — И я слышал весьма сбалансированные оценки реализуемости этого проекта. При этом мы, безусловно, полагаемся на совокупную экспертизу всех членов нашего научного совета, но в то же время открыты для более широкой научной дискуссии».

«Чтобы победить мелкомасштабную атмосферную турбулентность, фазируемая решетка должна быть разбита на очень мелкие элементы, размер излучающего элемента для нашей длины волны должен составлять не более 20−25 см, — объясняет Филип Любин. — Это минимум 20 млн излучателей, но такое количество меня не пугает. Для обратной связи в системе АО мы планируем использовать много опорных источников — бакенов — и на зонде, и на материнском корабле, и в атмосфере. Кроме того, мы будем отслеживать зонд на пути к цели. Мы также хотим использовать звезды как бакен для настройки фазирования решетки при приеме сигнала от зонда по прибытии, но для надежности будем отслеживать зонд».


Прибытие

Но вот зонд прибыл в систему альфы Центавра, сфотографировал окрестности системы и планеты (если они есть). Эту информацию нужно каким-то образом передать на Землю, причем мощность лазерного передатчика зонда ограничена единицами ватт. А через пять лет этот слабый сигнал нужно принять на Земле, выделив из фонового излучения звезды. По замыслу авторов проекта, у цели зонд маневрирует таким образом, что парус превращается в линзу Френеля, фокусирующую сигнал зонда в направлении Земли. Согласно оценкам, идеальная линза при идеальной фокусировке и идеальной ориентации усиливает сигнал мощностью 1 Вт до 10 13 Вт в изотропном эквиваленте. Но как рассмотреть этот сигнал на фоне гораздо более мощного (на 13−14 порядков!) излучения звезды? «Свет от звезды на самом деле довольно слаб, поскольку ширина линии нашего лазера очень мала. Узкая линия — ключевой фактор в сокращении фона, — говорит Любин. — Идея сделать из паруса линзу Френеля на основе тонкопленочного дифракционного элемента достаточно сложна и требует большой предварительной работы, чтобы понять, как именно лучше сделать это. Этот пункт на самом деле — один из главных в нашем плане проекта».


С другой стороны, фазированная решетка оптических излучателей / приемников излучения общей апертурой в километр — это инструмент, способный видеть экзопланеты с расстояния десятков парсек. Используя приемники с перестраиваемой длиной волны, можно определить состав атмосферы экзопланет. Нужны ли вообще в таком случае зонды? «Конечно, использование фазируемой решетки как очень большого телескопа открывает новые возможности в астрономии. — Но, — добавляет Любин, — мы планируем добавить к зонду инфракрасный спектрометр в качестве более долговременной программы в дополнение к камере и другим датчикам. У нас отличная группа фотоники в Калифорнийском университете в Санта-Барбаре, которая является частью коллаборации».

Но в любом случае, по словам Любина, первые полеты будут совершаться в пределах Солнечной системы: «Поскольку мы можем посылать огромное количество зондов, это дает нам много разных возможностей. Мы также можем посылать подобные маленькие (wafer-scale, то есть на чипе) зонды на обычных ракетах и использовать те же технологии для изучения Земли или планет и их спутников в Солнечной системе».

Редакция благодарит газету « Троицкий вариант — наука » и ее главного редактора Бориса Штерна за помощь в подготовке статьи.

12 апреля 2016 года знаменитый британский физик Стивен Хокинг и российский бизнесмен и меценат Юрий Мильнер объявили о выделении $100 млн на финансирование проекта Breakthrough Starshot . Целью проекта стала разработка технологий для создания космических аппаратов, способных совершить межзвездный полет к альфе Центавра.

В тысячах фантастических романов описаны гигантские фотонные звездолеты размером с небольшой (или большой) город, уходящие в межзвездный полет с орбиты нашей планеты (реже - с поверхности Земли). Но, по замыслу авторов проекта Breakthrough Starshot , все будет происходить совсем не так: в один знаменательный день две тысячи какого-то года к одной из ближайших звезд, альфе Центавра, стартует не один и не два, а сразу сотни и тысячи маленьких звездолетиков размером с ноготь и массой в 1 г. И у каждого из них будет тончайший солнечный парус площадью в 16 м 2 , который и понесет звездолет со все возрастающей скоростью вперед - к звездам.

«Выстрел к звёздам»

Основой проекта Breakthrough Starshot стала статья профессора физики Калифорнийского университета в Санта-Барбаре Филипа Любина «План для межзвездных полетов» (A Roadmap to Interstellar Flight ). Основная заявленная цель проекта состоит в том, чтобы сделать межзвездные полеты возможными уже при жизни следующего поколения людей, то есть не через столетия, а через десятилетия.

Сразу после официального анонса программы Starshot на авторов проекта обрушилась волна критики со стороны ученых и технических специалистов в различных областях. Критически настроенные эксперты отмечали многочисленные некорректные оценки и просто «белые пятна» в плане программы. Некоторые замечания были приняты во внимание, и план полета был несколько скорректирован в первой итерации.

Итак, межзвездный зонд будет представлять собой космический парусник с электронным модулем StarChip массой 1 г, соединенным сверхпрочными стропами с солнечным парусом площадью 16 м 2 , толщиной 100 нм и массой 1 г. Конечно, света нашего Солнца недостаточно, чтобы разогнать даже столь легкую конструкцию до скоростей, при которых межзвездные путешествия не будут длиться тысячелетиями. Поэтому главная изюминка проекта StarShot - это разгон с помощью мощного лазерного излучения, которое фокусируется на парусе. По оценкам Любина, при мощности лазерного луча 50–100 ГВт ускорение составит около 30 000 g, и за несколько минут зонд достигнет скорости в 20% световой. Полет к альфе Центавра продлится около 20 лет.

Вопросы без ответов: волна критики

Филип Любин в своей статье приводит численные оценки пунктов плана, однако многие ученые и специалисты относятся к этим данным весьма критически.
Конечно, для проработки столь амбициозного проекта, как Breakthrough Starshot , требуются годы работы, да и $100 млн - не такая уж и большая сумма для работы подобного масштаба. В особенности это касается наземной инфраструктуры - фазированной решетки лазерных излучателей. Установка такой мощности (50–100 ГВт) потребует гигантского количества энергии, то есть рядом нужно будет построить как минимум десяток крупных электростанций. Помимо этого, потребуется отводить от излучателей огромное количество тепла на протяжении нескольких минут, и как это делать - пока что совсем неясно. Таких вопросов без ответов в проекте Breakthrough Starshot огромное количество, однако пока что работа только началась.
«В научный совет нашего проекта входят ведущие специалисты, ученые и инженеры в различных релевантных областях, включая двух нобелевских лауреатов, - говорит Юрий Мильнер. - И я слышал весьма сбалансированные оценки реализуемости этого проекта. При этом мы, безусловно, полагаемся на совокупную экспертизу всех членов нашего научного совета, но в то же время открыты для более широкой научной дискуссии».

Под звёздными парусами

Одна из ключевых деталей проекта - это солнечный парус. В исходном варианте площадь паруса изначально составляла всего 1 м 2 , и из-за этого он мог не выдержать нагрева при разгоне в поле лазерного излучения. Новый вариант использует парус площадью 16 м 2 , так что тепловой режим будет хотя и довольно жестким, но, по предварительным оценкам, не должен расплавить или разрушить парус. Как пишет сам Филип Любин, в качестве основы для паруса планируется использовать не металлизированные покрытия, а полностью диэлектрические многослойные зеркала: «Такие материалы характеризуются умеренным коэффициентом отражения и чрезвычайно низким поглощением. Скажем, оптические стекла для волоконной оптики рассчитаны на большие световые потоки и имеют поглощение порядка двадцати триллионных на 1 мкм толщины». Добиться хорошего коэффициента отражения от диэлектрика при толщине паруса в 100 нм, а это много меньше длины волны, непросто. Но авторы проекта возлагают некоторые надежды на использование новых подходов, таких как монослои метаматериала с отрицательным показателем преломления.

Солнечный парус

Один из главных элементов проекта - солнечный парус площадью в 16 м 2 и массой всего 1 г. В качестве материала паруса рассматриваются многослойные диэлектрические зеркала, отражающие 99,999% падающего света (по предварительным расчетам этого должно хватить, чтобы парус не расплавился в поле излучения 100-ГВт лазера). Более перспективный подход, позволяющий сделать толщину паруса меньшей длины волны отражаемого света, - это использование в качестве основы паруса монослоя метаматериала с отрицательным показателем преломления (такой материал к тому же имеет наноперфорацию, что еще уменьшает его массу). Второй вариант - это использование материала не с высоким коэффициентом отражения, а с низким коэффициентом поглощения (10 −9), такого, как оптические материалы для световодов.

«Кроме того, нужно учитывать, что отражение от диэлектрических зеркал настраивается на узкий диапазон длин волн, а по мере ускорения зонда эффект Доплера сдвигает длину волны более чем на 20%, - говорит Любин. - Мы это учитывали, поэтому отражатель будет настроен примерно на двадцатипроцентную ширину полосы излучения. Мы спроектировали такие отражатели. Если необходимо, доступны и отражатели с большей шириной полосы».

Лазерная установка

Основная силовая установка звездолета не полетит к звездам - она будет расположена на Земле. Это наземная фазируемая решетка лазерных излучателей размером 1×1 км. Суммарная мощность лазеров должна составлять от 50 до 100 ГВт (это эквивалентно мощности 10–20 Красноярских ГЭС). Предполагается с помощью фазирования (то есть изменения фаз на каждом отдельном излучателе) сфокусировать излучение с длиной волны 1,06 мкм со всей решетки в пятно диаметром несколько метров на расстояниях вплоть до многих миллионов километров (предельная точность фокусировки 10 −9 радиана). Но такой фокусировке сильно мешает турбулентная атмосфера, размывающая луч в пятно размером примерно в угловую секунду (10 −5 радиана). Улучшения на четыре порядка предполагается достичь с помощью адаптивной оптики (АО), которая будет компенсировать атмосферные искажения. Лучшие системы адаптивной оптики в современных телескопах уменьшают размытие до 30 угловых миллисекунд, то есть до намеченной цели остается еще примерно два с половиной порядка. «Чтобы победить мелкомасштабную атмосферную турбулентность, фазируемая решетка должна быть разбита на очень мелкие элементы, размер излучающего элемента для нашей длины волны должен составлять не более 20–25 см, - объясняет Филип Любин. - Это минимум 20 млн излучателей, но такое количество меня не пугает. Для обратной связи в системе АО мы планируем использовать много опорных источников - бакенов - и на зонде, и на материнском корабле, и в атмосфере. Кроме того, мы будем отслеживать зонд на пути к цели. Мы также хотим использовать звезды как бакен для настройки фазирования решетки при приеме сигнала от зонда по прибытии, но для надежности будем отслеживать зонд».

Прибытие

Но вот зонд прибыл в систему альфы Центавра, сфотографировал окрестности системы и планеты (если они есть). Эту информацию нужно каким-то образом передать на Землю, причем мощность лазерного передатчика зонда ограничена единицами ватт. А через пять лет этот слабый сигнал нужно принять на Земле, выделив из фонового излучения звезды. По замыслу авторов проекта, у цели зонд маневрирует таким образом, что парус превращается в линзу Френеля, фокусирующую сигнал зонда в направлении Земли. Согласно оценкам, идеальная линза при идеальной фокусировке и идеальной ориентации усиливает сигнал мощностью 1 Вт до 10 13 Вт в изотропном эквиваленте. Но как рассмотреть этот сигнал на фоне гораздо более мощного (на 13–14 порядков!) излучения звезды? «Свет от звезды на самом деле довольно слаб, поскольку ширина линии нашего лазера очень мала. Узкая линия - ключевой фактор в сокращении фона, - говорит Любин. - Идея сделать из паруса линзу Френеля на основе тонкопленочного дифракционного элемента достаточно сложна и требует большой предварительной работы, чтобы понять, как именно лучше сделать это. Этот пункт на самом деле - один из главных в нашем плане проекта».

Межзвездный полет - вопрос не веков, а десятилетий

Юрий Мильнер ,
российский бизнесмен и меценат,
основатель фонда Breakthrough Initiatives:
За последние 15 лет произошли существенные, можно сказать, революционные продвижения по трем технологическим направлениям: миниатюризация электронных компонентов, создание нового поколения материалов, также удешевление и увеличение мощности лазеров. Сочетание этих трех тенденций приводит к теоретической возможности разогнать наноспутник до почти релятивистских скоростей. На первом этапе (5–10 лет) мы планируем провести более углубленное научно-инженерное исследование, чтобы понять, насколько этот проект реализуем. На сайте проекта есть список из примерно 20 серьезных технических проблем, без решения которых мы не сможем идти дальше. Это не окончательный список, но, опираясь на мнение научного совета, мы считаем, что первый этап проекта имеет достаточную мотивацию. Я знаю, что проект звездного паруса подвергается серьезной критике со стороны специалистов, но думаю, что позиция некоторых критически настроенных экспертов связана с не совсем точным пониманием того, что же мы реально предлагаем. Мы финансируем не полет к другой звезде, а вполне реалистичные многоцелевые разработки, связанные с идеей межзвездного зонда лишь общим направлением. Эти технологии найдут применение и для полетов в Солнечной системе, и для защиты от опасных астероидов. Но постановка столь амбициозной стратегической цели, как межзвездный полет, представляется оправданной в том смысле, что развитие технологий за последние 10–20 лет, вероятно, делает реализацию подобного проекта вопросом не веков, как многие предполагали, а скорее - десятилетий.

С другой стороны, фазированная решетка оптических излучателей / приемников излучения общей апертурой в километр - это инструмент, способный видеть экзопланеты с расстояния десятков парсек. Используя приемники с перестраиваемой длиной волны, можно определить состав атмосферы экзопланет. Нужны ли вообще в таком случае зонды? «Конечно, использование фазируемой решетки как очень большого телескопа открывает новые возможности в астрономии. Но, - добавляет Любин, - мы планируем добавить к зонду инфракрасный спектрометр в качестве более долговременной программы в дополнение к камере и другим датчикам. У нас отличная группа фотоники в Калифорнийском университете в Санта-Барбаре, которая является частью коллаборации».

Но в любом случае, по словам Любина, первые полеты будут совершаться в пределах Солнечной системы: «Поскольку мы можем посылать огромное количество зондов, это дает нам много разных возможностей. Мы также можем посылать подобные маленькие (wafer-scale , то есть на чипе) зонды на обычных ракетах и использовать те же технологии для изучения Земли или планет и их спутников в Солнечной системе».

Редакция благодарит газету «Троицкий вариант - наука» и ее главного редактора Бориса Штерна за помощь в подготовке статьи.

И покинули солнечную систему; теперь с их помощью изучают межзвёздное пространство . Станций, чьей прямой миссией был бы полёт до ближайших звёзд, на начало XXI века не существует.

Расстояние до ближайшей звезды (Проксимы Центавра) составляет около 4,243 световых лет , то есть примерно в 268 тысяч раз больше расстояния от Земли до Солнца .

Проекты звездолётов, движителем которых является давление электромагнитных волн

В 1971 году в докладе Г. Маркса на симпозиуме в Бюракане было предложено использовать для межзвёздных перелётов лазеры рентгеновского диапазона . Позже возможность использования этого типа движителя исследовалась НАСА . В результате был сделан следующий вывод: «Если будет найдена возможность создания лазера, работающего в рентгеновском диапазоне длин волн, то можно говорить о реальной разработке летательного аппарата (разгоняемого лучом такого лазера), который сможет покрывать расстояния до ближайших звёзд значительно быстрее, чем все известные в настоящее время системы с ракетными двигателями. Расчёты показывают, что с помощью космической системы, рассмотренной в данной работе, можно достичь звезды Альфа Центавра… примерно за 10 лет» .

В 1985 году Р. Форвардом была предложена конструкция межзвёздного зонда, разгоняемого энергией микроволнового излучения. Проектом предусматривалось, что зонд достигнет ближайших звёзд за 21 год.

На 36-м Международном астрономическом конгрессе был предложен проект лазерного звездолёта, движение которого обеспечивается энергией лазеров оптического диапазона, расположенных на орбите вокруг Меркурия . По расчётам, путь звездолёта этой конструкции до звезды Эпсилон Эридана (10,8 световых лет) и обратно занял бы 51 год.

Аннигиляционные двигатели

Основными проблемами, которые выделяются учёными и инженерами, анализировавшими конструкции аннигиляционных ракет (англ.), являются получение нужного количества антивещества, его хранение, а также фокусировка потока частиц в нужном направлении. Указывается, что современное состояние науки и техники даже теоретически не позволяет создавать подобные конструкции.

Прямоточные двигатели, работающие на межзвёздном водороде

Основная составляющая массы современных ракет - это масса топлива, необходимого ракете для разгона. Если удастся каким-нибудь образом использовать в качестве рабочего тела и топлива окружающую ракету среду, можно значительно сократить массу ракеты и достичь за счёт этого больших скоростей движения.

Корабли поколений

Возможны также межзвёздные путешествия с использованием звездолётов, реализующих концепцию «кораблей поколений » (например, по типу колоний О"Нейла). В таких звездолётах создаётся и поддерживается замкнутая биосфера , способная поддерживать и воспроизводить себя в течение нескольких тысяч лет. Полёт происходит с небольшой скоростью и занимает очень долгое время, на протяжении которого успевают смениться многие поколения космонавтов.

Сверхсветовое движение

Примечания

См. также

Источники

  • Колесников Ю. В. Вам строить звездолёты. М., 1990. 207 с. ISBN 5-08-000617-X.
  • http://www.gazeta.ru/science/2008/01/30_a_2613225.shtml?4 Лекция о межзвездных полетах, об ускорении на 100 км/сек возле звезд

В одной только нашей Галактике расстояния между звездными системами невообразимо огромны. Если пришельцы из космоса действительно посещают Землю, уровень их технического развития должен во сто крат превосходить теперешний уровень нашего, земного.

На расстоянии в несколько световых лет

Для обозначения расстояний между звездами астрономы ввели понятие «световой год». Скорость света - самая быстрая во Вселенной: 300 ООО км/с!

Ширина нашей Галактики - 100 ООО световых лет. Чтобы покрыть такое громадное расстояние, пришельцам с других планет надо построить космический корабль, скорость которого равна или даже превышает скорость света.

Ученые полагают, что материальный объект не может двигаться быстрее скорости света. Впрочем, раньше они считали, что невозможно развить и сверхзвуковую скорость, однако в 1947 г. самолет модели «Белл Х-1» успешно преодолел звуковой барьер.

Возможно в будущем, когда у человечества накопится больше знаний о физических законах Вселенной, земляне сумеют построить космический корабль, который будет передвигаться со скоростью света и даже быстрее.

Великие путешествия

Даже если инопланетяне способны передвигаться в космическом пространстве со скоростью света, подобное путешествие должно занять многие годы. Для землян, продолжительность жизни которых составляет в среднем 80 лет, это было бы невозможно. Однако у каждого вида живых существ свой собственный жизненный цикл. Например, в Калифорнии, США, есть остистые сосны, которым уже 5000 лет.

Кто знает, сколько лет живут пришельцы? Может быть, несколько тысяч? Тогда межзвездные перелеты, длящиеся сотни лет, для них обычны.

Кратчайшие пути

Вполне вероятно, что инопланетяне нашли короткие пути через космическое пространство - гравитационные «дыры», или искажения пространства, образованные силой тяжести. Такие места во Вселенной могли бы стать своего рода мостами - кратчайшими путями между небесными телами, находящимися в разных концах Вселенной.

Рубрики

    • . Другими словами, гороскоп – это астрологическая карта, составленная с учетом места и времени, учитывающая расположение планет относительно линии горизонта. Для построения индивидуального натального гороскопа необходимо с максимальной точностью знать время и место рождения человека. Это требуется для того, чтобы узнать, как располагались небесные тела в данное время и в данном месте. Эклиптика в гороскопе изображена в виде окружности, разделенной на 12 секторов (знаки зодиака . Обратившись к натальной астрологии, вы сможете лучше понять себя и других. Гороскоп – это инструмент самопознании. С его помощью можно не только исследовать собственный потенциал, но и разобраться в отношениях с окружающими и даже принять некоторые важные решения.">Гороскоп127
  • . С их помощью узнают ответы на конкретные вопросы и предсказывают будущее.Узнать грядущее можно по домино, это один из очень редких типов гадания. Гадают и на чайной и кофейной гуще, по ладони, и по китайской Книге Перемен. Каждый из этих способов направлен на предсказание будущего.Если вы желаете знать, что ожидает вас в ближайшее время, выберите то гадание, которое вам больше всего по душе. Но помните: какие бы события ни были вам предсказаны, принимайте их не как непреложную истину, а как предупреждение. Используя гадания, вы предугадаете свою судьбу, но, приложив определенные усилия, сможете её изменить.">Гадания65