Схема редупликации днк. Репликация днк, условия, этапы, их характеристика


Репликация ДНК

Реплика́ция ДНК - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый англ. replisome ) .

История изучения

Каждая молекула ДНК состоит из одной цепи исходной родительской молекулы и одной вновь синтезированной цепи. Такой механизм репликации называется полуконсервативным. В настоящее время этот механизм считается доказанным благодаря опытам Мэтью Мезельсона и Франклина Сталя ( г.) . Ранее существовали и две другие модели: «консервативная» - в результате репликации образуется одна молекула ДНК, состоящая только из родительских цепей, и одна, состоящая только из дочерних цепей; «дисперсионная» - все получившиеся в результате репликации молекулы ДНК состоят из цепей, одни участки которых вновь синтезированы, а другие взяты из родительской молекулы ДНК.

Общие представления

Репликация ДНК - ключевое событие в ходе деления клетки . Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

  1. инициация репликации
  2. элонгация
  3. терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации . В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон . Репликон - это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта. Геномы бактерий , как правило, представляют собой один репликон, это значит, что репликация всего генома является следствием всего одного акта инициации репликации. Геномы эукариот (а также их отдельные хромосомы) состоят из большого числа самостоятельных репликонов, это значительно сокращает суммарное время репликации отдельной хромосомы. Молекулярные механизмы, которые контролируют количество актов инициации репликации в каждом сайте за один цикл деления клетки, называются контролем копийности. В бактериальных клетках помимо хромосомной ДНК часто содержатся плазмиды , которые представляют собой отдельные репликоны. У плазмид существуют свои механизмы контроля копийности: они могут обеспечивать синтез как всего одной копии плазмиды за клеточный цикл , так и тысяч копий .

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка - место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок - участок хромосомы, где ДНК уже реплицирована, окруженный более протяженными участками нереплицированной ДНК .

В репликационной вилке ДНК копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза . Репликационная вилка движется со скоростью порядка 100 000 пар нуклеотидов в минуту у прокариот и 500-5000 - у эукариот .

Молекулярный механизм репликации

Ферменты (хеликаза , топоизомераза) и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы , способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.

Цепи молекулы ДНК расходятся, образуют репликационную вилку , и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.

Характеристики процесса репликации

Примечания

Литература

  • Сохранение ДНК в ряду поколений: Репликация ДНК (Фаворова О.О., СОЖ, 1996) PDF (151 KB)
  • Репликация ДНК (анимация) (англ.)

Wikimedia Foundation . 2010 .

Смотреть что такое "Репликация ДНК" в других словарях:

    репликация днк - – биосинтез новых ДНК на матрице материнской ДНК … Краткий словарь биохимических терминов

    репликация ДНК - DNR biosintezė statusas T sritis chemija apibrėžtis Fermentų katalizuojama polinukleotidinė DNR sintezė ant DNR matricos. atitikmenys: angl. DNA replication rus. репликация ДНК ryšiai: sinonimas – DNR replikacija … Chemijos terminų aiškinamasis žodynas

    - (от позднелат. replicatio повторение), редупликация, ауторепликация, процесс самовоспроизведения макромолекул нуклеиновых к т, обеспечивающий точное копирование генетич. информации и передачу её от поколения к поколению. В основе механизма Р.… … Биологический энциклопедический словарь

    - (от позднелат. replicatio повторение) (ауторепродукция аутосинтез, редупликация), удвоение молекул ДНК (у некоторых вирусов РНК) при участии специальных ферментов. Репликацией называется также удвоение хромосом, в основе которого лежит репликация … Большой Энциклопедический словарь

    - (дезоксирибонуклеиновая кислота), НУКЛЕИНОВАЯ КИСЛОТА, которая является основным компонентом ХРОМОСОМ ЭУКАРИОТОВЫХ клеток и некоторых ВИРУСОВ. ДНК часто называют «строительным материалом» жизни, поскольку в ней хранится ГЕНЕТИЧЕСКИЙ КОД,… … Научно-технический энциклопедический словарь

    Репликация неуправляемая - * рэплікацыя некіруемая * runaway replication множественная репликация ДНК плазмид, которая не связана с делением клетки и не контролируется этим делением … Генетика. Энциклопедический словарь

    Двойная спираль ДНК Дезоксирибонуклеиновая кислота (ДНК) один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная… … Википедия

    Схематическое изображение процесса репликации, цифрами отмечены: (1) запаздывающая нить, (2) лидирующая нить, (3) ДНК полимераза (Polα), (4) ДНК лигаза, (5) РНК праймер, (6) ДНК праймаза, (7) фрагмент Оказаки, (8) ДНК полимераза (Polδ), (9)… … Википедия

Репликация – передача информации от ДНК к ДНК, самоудвоение ДНК (биосинтез ДНК).

Молекула ДНК, состоящая из двух спиралей, удваивается при делении клетки. Удвоение ДНК основано на том, что при расплетении нитей к каждой нити можно достроить комплементарную копию , таким образом, получая две нити молекулы ДНК, копирующие исходную.

Условия необходимые для репликации: 1.) Матрица - нити ДНК. Расщепление нити называется репликативная вилка . Она может образовываться внутри молекулы ДНК. Они движутся в разных направлениях, образуя репликативный глазок . Таких глазков в молекуле ДНК эукариот несколько, каждый имеет две вилки. 2.) Субстрат . Пластическим материалом являются дезоксинуклеотидтрифосфаты : дАТФ, дГТФ, дЦТФ, дТТФ. Затем происходит их распад до дезоксинуклеотидмонофосфатов , двух молекул фосфата неорганического с выделением энергии, т.е. они одновременно являются источником и энергии , и пластического материала . 3.) Ионы магния . 4.) Репликативный комплекс ферментов . а) ДНК – раскручивающие белки : - DNA-A (вызывает расхождение нитей); - хеликазы (расщепляют цепь ДНК); - топоизомеразы 1 и 2 (раскручивают сверх спирали). Разрывают (3",5")-фосфодиэфирные связи . Топоизомераза 2 у прокариот называется гираза . б) Белки, препятствующие соединению нитей ДНК (SSB-белки ). в) ДНК-полимераза (катализирует образование фосфодиэфирных связей). ДНК-полимераза только удлиняет уже существующую нить, но не может соединить два свободных нуклеотида. г) Праймаза (катализирует образование «затравки» к синтезу). Это по своей структуре РНК-полимераза, которая соединяет одиночные нуклеотиды. д) ДНК-лигаза . 5.) Праймеры - «затравка» для репликации. Это короткий фрагмент, состоящий из рибонуклеотидтрифосфатов (2 - 10). Образование праймеров катализируется праймазой .

Этапы репликации: 1.) Инициация (образование репликативной вилки); 2.) Элонгация (синтез новых нитей); 3.) Исключение праймеров ; 4.) Терминация (завершение синтеза двух дочерних цепей).

Инициация репликации: - регулируют сигнальные белковые молекулы – факторы роста ;- обеспечивают ферменты и специальные белки .

Необходимые ферменты: ДНК-топоизомеразы - ферменты раскручивающие суперспирали ДНК. ДНК-хеликаза – осуществляет разрыв водородных связей в молекуле двухцепочечной ДНК. В результате образуется репликативная вилка (репликативный глазок ).


Белки, связывающиеся с одноцепочечными нитями ДНК, связываются с одноцепочечными ДНК и препятствуют их комплементарному соединению.



Элонгация репликации. Субстратами синтеза являются дезоксинуклеозидтрифосфаты , выполняющие роль строительного материала и источников энергии.

Необходимые ферменты: ДНК-праймаза , который катализирует синтез коротких молекул РНК-затравок для ДНК-полимеразы. ДНК-полимераза обеспечивает включение в растущую «новую» цепь нуклеотидов комплементарных «старой», то есть матричной цепи.

Синтез новых цепей ДНК может протекать только в направлении от 5’-конца в сторону 3’-конца . На одной цепи ДНК синтезируется непрерывно «лидирующая» цепь , а на другой образуются короткие фрагменты - «запаздывающая» цепь (фрагменты Оказаки ).

После удаления праймеров ДНК-лигаза сшивает короткие фрагменты Оказаки между собой (терминация ).

Информация передается матричным способом . Полуконсервативный механизм репликации ДНК.

Синтез отстающей цепи
3’
3’
5’
5’


Расшифровка структуры молекулы ДНК помогла объяснить и принцип ее репликации (удвоения) в клетке. Этот принцип состоит в том, что каждая из двух полинуклеотидных нитей молекулы ДНК служит в качестве программы (матрицы) для синтеза новой (комплементарной) нити. В результате на основе одной двухцепочечной молекулы образуются две одинаковые двухцепочечные молекулы, в каждой из которых одна цепочка является старой, а другая - новой (вновь синтезированной). Такой принцип репликации ДНК был назван полуконсервативным (рис. 5.12). В соответствии с этим принципом нуклеотидная последовательность матричной (родительской) нити считывается в направлении 3"->5’, тогда как синтез новой (дочерней) нити идет в направлении 5"-?З". Поскольку две комплементарные цепочки родительской молекулы ДНК являются антипараллельными, то синтез новой полинуклеотидной цепочки на каждой из них идет в противоположном направлении.

Рис. 5.12.

Механизм репликации ДНК является достаточно сложным и, вероятно, различается в случае организмов, содержащих относительно небольшие по размерам молекулы ДНК в замкнутой (кольцевой) форме (многие вирусы и бактерии), и эукариот, клетки которых имеют молекулы огромных размеров, находящиеся в линейной (незамкнутой) форме.

Небольшая кольцевая молекула ДНК представляет собой одну структурную единицу репликации (репликон), имеющую единственную точку начала (инициации) репликации (0-пункт, состоящий примерно из 300 нуклеотидов), в которой начинается процесс расхождения (расплетания) двух нитей родительской молекулы и матричного синтеза комплементарных копий (реплик) дочерней ДНК. Этот процесс продолжается непрерывно по длине копируемой структуры и заканчивается в этом же репликоне образованием двух молекул «полуконсервативного» типа. В больших линейных молекулах ДНК эукариот имеется много точек начала репликации и соответствующих им репликонов (от нескольких сотен до десятков тысяч), т. е. такая ДНК является полирепликонной.

При рассмотрении современных представлений о механизме репликации ДНК эукариот можно условно выделить гри последовательных этапа этого процесса, происходящего в репликоне, в каждом из которых принимают участие те или иные белки (ферменты).

Первый этап связан с быстрым раскручиванием двух полинуклеотидных нитей спирализованной молекулы ДНК на определенном ее участке (в границах работающего репликона) и с их разделением путем разрушения водородных связей между парами комплементарных оснований. При этом образуются два одноцепочечных фрагмента родительской молекулы, каждый из которых может высту пать в роли матрицы для синтеза комплементарной (дочерней) нити. Этот этап инициируется в соответствующей точке начата репликации и обеспечивается комплексным участием нескольких различных белков. В результате их действия формируется У-образная структура, названная вилкой репликации, в которой две родительские цепочки ДНК уже отделены друг от друга (рис. 5.13). Образовавшаяся вилка репликации быстро продвигается вдоль двойной спирали родительской молекулы ДНК благодаря активности «расплетающего» фермента ДНК-гсликазы и при участии группы дестабилизирующих белков. Эти белки обладают способностью связываться только с одноцепочечными (уже раскрученными и разделенными) участками молекулы, препятствуя возникновению на них вторичных складчатых образований («шпилек») за счет случайных соединений между комплементарными нуклеотидами однони- тевой структуры. Следовательно, они способствуют выпрямлению однони- тевьгх участков молекулы, что необходимо для нормального выполнения ими матричных функций.


Рис. 5.13.

Быстрое расплетание ДНК с помощью геликазы без дополнительного вращения нитей по отношению друг к другу должно приводить к образованию на участках родительской молекулы перед движущейся вилкой репликации новых витков (узлов), создающих на них повышенное топологическое напряжение. Такое напряжение устраняется еще одним белком (ДНК-топоизомеразой), который, перемещаясь вдоль двухспиральной родительской ДНК перед вилкой репликации, вызывает временные разрывы в одной из цепочек молекулы, разрушая фосфодиэфирные связи и присоединяясь к разорванному концу. Возникший разрыв обеспечивает последующее вращение нити двойной спирали, что, в свою очередь, приводит к расплетанию образующихся супервитков (узлов). Поскольку разрыв поли- нуклеотидной цепочки, вызванный топоизомеразой, носит обратимый характер, то разорванные концы быстро воссоединяются сразу после разрушения комплекса этого белка с разорванным концом.

На втором этапе происходит матричный синтез новых (дочерних) Полину клеотидных цепей на основе принципа комплементарного соответствия нуклеотидов старой (матричной) и новой цепей. Этот процесс осуществляется путем соединения (полимеризации) нуклеотидов новой цепи с помощью ферментов ДНК-полимераз нескольких типов (ферменты Pol a, Pol р, Pol у, Pol 6, Pol е). Следует отметить, что ни одна из известных сегодня ДНК-полимераз не способна начать синтез нового полинуклеотида путем простого соединения двух свободных нуклеотидов. Инициация этого процесса требует наличия свободного З"-конца какой-либо полинуклеотидной цепочки ДНК (либо РНК), которая соединена с другой (комплементарной) цепочкой ДНК. Иными словами, ДНК-полимераза способна лишь добавлять новые нуклеотиды к свободному З"-концу имеющегося полинуклеотида и, следовательно, наращивать эту структуру только в направлении 5*-*?3".

С учетом указанного обстоятельства становится понятным асимметричный характер функционирования вилки репликации (рис. 5.13, 5.14). Как видно из приведенных схем, на одной из матричных нитей вилки (3"-*5") идет относительно быстрый и непрерывный синтез дочерней нити (ведущей, или лидирующей, цепочки) в направлении 5"->3’, тогда как на другой матрице (5"->3") идет более медленный и прерывистый синтез отстающей цепочки короткими фрагментами (100-200 нуклеотидов), получившими название фрагментов Оказаки, и также в направлении 5’-?3". Считается, что синтез ведущей и отстающей цепочек осуществляют ДНК-полимеразы разных типов. Свободный З’-конец, необходимый для начала синтеза фрагмента Оказаки, обеспечивается короткой нитью РНК (около 10 нуклеотидов), получившей название РНК-праймера (РНК-затравки), которая синтезируется с помощью фермента РНК-праймазы. РНК- праймеры могут комплементарно спариваться сразу с несколькими участками на матричной нити ДНК, создавая условия для одновременного синтеза нескольких фрагментов Оказаки при участии ДНК-полимеразы Ш (рис. 5.14). Когда синтезированный фрагмент Оказаки достигает 5"-конца очередного РНК-праймера, начинает проявляться 5"-экзонуклеазиая активность ДНК-полимеразы I, которая последовательно выщепляет нуклеотиды РНК в направлении 5*-?З*. При этом удаляемый РНК-праймер замещается соответствующим фрагментом ДНК.

Последний (третий) этап рассматриваемого процесса связан с действием фермента ДНК-лигазы, который соединяет З"-ОН-конец одного из фрагментов Оказаки с 5"-Р04-концом соседнего фрагмента с образованием фос- фодиэфирной связи, восстанавливая таким образом первичную структуру отстающей цепочки, синтезируемой в функционирующем репликоне. Дальнейшая спирализация появившегося «полуконсервативного» участка ДНК (закручивание спирали) происходит с участием ДНК-гиразы (катализирует формирование негативных супервитков в ДНК) и некоторых других белков.

Рис. 5.14.

Полирепликонный принцип организации молекулы ДНК различных эукариот, в том числе человека, обеспечивает возможность последовательного копирования генетического материала этих организмов без одновременного раскручивания (деспирализации) всей огромной по размерам и сложно упакованной молекулы, что значительно сокращает время ее репликации.

Генетический анализ процесса репликации ДНК у эукариот по сравнению с прокариотами выявил в основных чертах общность синтеза ДНК у этих объектов. В эукариотических клетках были выявлены и выделены в чистом виде ферменты, обладающие геликазной и топоизомеразной активностями, а также белки, специфически связывающиеся с одноцепочечными участками ДНК. Обнаружено три вида ДНК-полимеразной активности: ферменты Pol а (основная полимераза), Pol р (участвует в репарационных процессах), Pol у (митохондриальная полимераза).

Иными словами, в тот или иной момент времени в одной группе репликонов молекулы процесс копирования может быть уже завершен объединением и спирализацией соответствующих участков, тогда как в другой группе - только начинаться расплетанием двухнитевых структур.

ДНК является надежным хранилищем генетической информации. Но ее нужно не только держать в сохранности, но и передавать потомству. От этого зависит выживаемость вида. Ведь родители должны передать детям все то, чего они достигли в ходе эволюции. В ней записано все: начиная от количества конечностей и заканчивая цветом глаз. Конечно, у микроорганизмов этой информации гораздо меньше, но и ее нужно передать. Для этого клетка делится. Чтобы генетическая информация досталась обеим дочерним клеткам, ее нужно удвоить, этот процесс называется "репликация ДНК". Она происходит перед делением клетки, неважно, какой именно. Это может быть бактерия, которая решила размножиться. Или это может быть рост новой кожи на месте пореза. Процесс удвоения дезоксирибонуклеиновой кислоты должен четко отрегулироваться и завершиться до начала деления клетки.

Где происходит удвоение

Репликация ДНК происходит непосредственно в ядре (у эукариот) или в цитоплазме (у прокариот). Нуклеиновая кислота состоит из нуклеотидов - аденина, тимина, цитозина и гуанина. Обе цепочки молекулы построены по принципу комплиментарности: аденину в одной цепи соответствует тимин, а гуанину - цитозин. Удвоение молекулы должно пройти таким образом, чтобы и у дочерних спиралей сохранился принцип комплиментарности.

Начало репликации - инициация

Дезоксирибонуклеиновая кислота представляет собой двуцепочечную спираль. Репликация ДНК происходит путем достраивания дочерних цепей по каждой родительской цепочке. Чтобы этот синтез стал возможен, спирали нужно «распутать», а цепочки отделить друг от друга. Эту роль выполняет геликаза - она раскручивает спираль дезоксирибонуклеиновой кислоты, вращаясь с большой скоростью. Начало удвоения ДНК не может начаться с любого места, такой сложный процесс требует определенного участка молекулы - сайта инициации репликации. После того как была определена начальная точка удвоения, а геликаза начала свою работу по распутыванию спирали, цепочки ДНК расходятся в стороны, образуя репликативную вилку. На них садятся ДНК-полимеразы. Именно они и будут синтезировать дочерние цепочки.

Элонгация

В одной молекуле дезоксирибонуклеиновой кислоты может образоваться от 5 до 50 репликативных вилок. Синтез дочерних цепочек происходит одновременно в нескольких участках молекулы. Но это непросто достраивание комплиментарных нуклеотидов. Цепочки нуклеиновой кислоты антипараллельны друг другу. Разная направленность родительских цепей сказывается при удвоении, это обусловило сложный механизм репликации ДНК. Одна из цепей достраивается дочерней непрерывно и называется лидирующей. Оно и правильно, ведь полимеразе очень удобно присоединять свободный нуклеотид к 3’-ОН концу предыдущего. Такой синтез идет непрерывно, в отличие от процесса на второй цепи.

Запаздывающая цепь, фрагменты О’Казаки

С другой цепочкой возникают сложности, ведь там свободным оказывается 5’-конец, к которому невозможно прикрепить свободный нуклеотид. Тогда ДНК полимераза действует с другой стороны. Для того чтобы достроить дочернюю цепочку, создается праймер, комплиментарный родительской цепи. Он образуется у самой репликативной вилки. С него и начинается синтез маленького кусочка, но уже по «верному» пути - присоединение нуклеотидов происходит к 3’-концу. Таким образом, достраивание цепочки у второй дочерней спирали происходит прерывисто и имеет направление, противоположное движению репликативной вилки. Эти фрагменты были названы фрагментами О’Казаки, они имеют длину около 100 нуклеотидов. После того как фрагмент достроился до предыдущего готового кусочка, праймеры вырезаются специальным ферментом, место выреза заполняется недостающими нуклеотидами.

Терминация

Удвоение завершается, когда обе цепочки достроили себе дочерние, а все фрагменты О’Казаки сшиты между собой. У эукариотов репликация ДНК заканчивается, когда репликативные вилки встречаются друг с другом. А у прокариот эта молекула кольцевая, а процесс ее удвоения происходит без предварительного разрыва цепи. Получается, что вся дезоксирибонуклеиновая кислота является одним большим репликоном. И удвоение заканчивается тогда, когда репликативные вилки встречаются на противоположной стороне кольца. После окончания репликации обе цепочки родительской дезоксирибонуклеиновой кислоты должны быть сцеплены обратно, после чего обе молекулы закручиваются до образования суперспиралей. Далее происходит метилирование обеих молекул ДНК по аденину в участке -ГАТЦ-. Это не разъединяет цепи и не мешает их комплиментарности. Это необходимо для складывания молекул в хромосомы, а также для регуляции чтения генов.

Скорость и точность репликации

Вторая стадия удваивания ДНК (элонгация) проходит со скоростью около 700 нуклеотидов в секунду. Если вспомнить, что на один виток нуклеиновой кислоты приходится 10 пар мономеров, то выходит, что во время «расплетания» молекула вращается с частотой 70 оборотов в секунду. Для сравнения: скорость вращения кулера в системном блоке компьютера составляет примерно 500 оборотов в секунду. Но несмотря на высокие темпы, ДНК полимераза практически никогда не ошибается. Ведь она просто подбирает комплиментарные нуклеотиды. Но даже если она совершает ошибку, ДНК-полимераза ее распознает, делает шаг назад, отрывает неправильный мономер и заменяет его верным. Механизм репликации ДНК очень сложен, но основные моменты мы смогли разобрать. Важно понимать его значение как для микроорганизмов, так и для многоклеточных существ.