Гмо растений в мире. ГМО: правда и мифы о продуктах генной инженерии


Споры вокруг генномодифицированных продуктов ведутся уже не одно десятилетие. Однако, по мнению социологов, каждый третий россиянин ничего не знает о достижениях генной инженерии. Между тем, многие ученые считают, что генномодифицированные организмы (ГМО) увеличивают риск возникновения опасных аллергий, пищевых отравлений, мутаций, онкологических заболеваний, а также вызывают развитие невосприимчивости к антибиотикам.Что такое ГМ-растения?
Это растения, в которые встраивают чужеродные гены с целью улучшения их полезных свойств, например, развития устойчивости к гербицидам и пестицидам, увеличения сопротивляемости к вредителям, повышения урожайности и т.д. ГМ-растения получают путем внедрения в ДНК растения гена другого организма. Донорами могут быть микроорганизмы, вирусы, другие растения, животные. Например, получен морозоустойчивый помидор, в ДНК которого встроен ген североамериканской морской камбалы. Для создания сорта пшеницы, устойчивой к засухе, использовался ген скорпиона.

Первые посадки трансгенных злаков сделаны в США в 1988 году, а уже в 1993 году продукты с ГМ-компонентами появились в американских магазинах. На российский рынок трансгенная продукция попала в конце 90-х годов.

Основной поток ГМ-культур - это ввозимые из-за рубежа соя, картофель, кукуруза, рапс, пшеница. Они могут попасть к нам на стол как в чистом виде, так и в качестве добавок в другие продукты. Так, главный потребитель генномодифицированного соевого сырья (концентратов, соевой муки) - мясоперерабатывающая промышленность, поэтому буквально в каждой колбасе может оказаться ГМ-соя. Как правило, она скрывается за надписями «белок растительного происхождения» или «аналог белка». Генетически модифицированные культуры используются также в качестве добавок в рыбных, хлебобулочных, кондитерских изделиях и даже в детском питании!

Несмотря на уверения ученых-генетиков в безопасности ГМО, независимые эксперты утверждают, что ГМ-культуры растений выделяют в тысячу раз больше токсинов, чем обычные организмы. В Швеции, где трансгены запрещены, аллергией болеют 7% населения, а в США, где они разрешены - 70,5%.

Многие трансгенные сорта, устойчивые к насекомым, вырабатывают белки, способные блокировать ферменты пищеварительного тракта не только у насекомых, но и у человека, а также влиять на поджелудочную железу. ГМ-сорта кукурузы, табака и томатов, устойчивые к насекомым-вредителям, способны вырабатывать вещества, разлагающиеся на токсичные и мутагенные соединения, представляющие прямую опасность для человека.

При получении ГМО часто используются маркерные гены устойчивости к антибиотикам. Есть вероятность их перехода в микрофлору кишечника, что было показано в соответствующих экспериментах, а это, в свою очередь, может привести к невозможности вылечивать многие заболевания.

Как отличить опасные продукты?

В нашей стране разрешено использование 14 видов ГМО (8 сортов кукурузы, 4 сорта картофеля, 1 сорт риса и 1 сорт сахарной свеклы) для продажи и производства продуктов питания. Пока только в Москве, Нижнем Новгороде и Белгородской области действует закон, запрещающий продажу и производство детского питания с использованием ГМО.

Закон РФ «О защите прав потребителей» от 12 декабря 2007 года предписывает сообщать о наличии трасгенов на упаковке, если продукт содержит более 0,9% ГМО. Однако прямой маркировки «Содержит ГМО» не существует. Наличие ГМО и его процентное содержание должно быть указано в списке ингредиентов продукта.

Как обезопасить себя?

■ Не покупайте мясные продукты с растительными добавками. Хотя они дешевле, но с большой вероятностью могут содержать ГМ-ингредиенты.

■ Главный производитель трансгенов - США. Поэтому опасайтесь сои из этой страны, а также консервированных зеленого горошка и кукурузы. Если вы покупаете сою, лучше всего отдать предпочтение российскому производителю.

■ В Китае не ведется ГМ-производство, однако никому не известно, что может прийти транзитом из этой страны.

■ При покупке мясных и соевых продуктов, обращайте пристальное внимание на маркировку.

■ Сегодня генно-модифицированные продукты выращивают в 21 стране мира. Лидер в производстве - США, затем идут Аргентина, Бразилия и Индия. В Европе к ГМИ относятся настороженно, а в России высаживать ГМ растения вовсе запрещено. Правда, этот запрет обходят. Посевы ГМ пшеницы есть на Кубани, в Ставрополье и на Алтае.

Более 50 стран (в том числе страны EC, Япония, Китай и др.) законодательно ввели обязательную маркировку ГМ-продуктов, обеспечивая тем самым права потребителей на осознанный выбор того, что они едят. В Италии принят закон, запрещающий использование ГМИ в детском питании. В Греции трансгенные растения не только не выращиваются, но и не используются в производстве продуктов питания.

Полезно также запомнить названия некоторых фирм, которые, по данным государственного реестра, поставляют ГМ-сырье своим клиентам в России или сами являются производителями:

Central Soya Protein Group, Дания

ООО "БИОСТАР ТРЕЙД", Санкт-Петербург

ЗАО "Универсал", Нижний Новгород

"Монсанто Ко", США

"Протеин Текнолоджиз Интернэшнл Москоу", Москва

ООО "Агенда", Москва
ЗАО "АДМ-Пищевые продукты", Москва
ОАО "ГАЛА", Москва

ЗАО "Белок", Москва

"Дера Фуд Текнолоджи Н.В.", Москва

"Herbalife International of America", США

"OY FINNSOYPRO LTD", Финляндия

ООО "Салон Спорт-Сервис", Москва

"Интерсоя", Москва.

Наверное, каждый из вас слышал о грозном трудноизлечимом заболевании - раке - которое может поражать многие органы у человека и животных. И возникает вопрос: могут ли растения болеть раковыми заболеваниями?

Болеют ли растения раком?

Рост каллуса внешне напоминает рост опухолей у животных. Но к счастью для растений, деление клеток у них всегда зависит от двух гормонов: ауксинов и цитокининов . Чтобы рост каллуса прекратился, достаточно сократить поступление хотя бы одного из них (клетки каллуса сами, как правило, не способны образовывать эти вещества). Однако, многие вредители и возбудители болезней растений синтезируют или ауксины, или цитокинины (в редких случаях - и те, и другие) для того, чтобы контролировать рост растительных клеток. Тогда образуются «ведьмины мётлы », галлы и прочие болезненные разрастания на теле растения. Но стоит только тем или иным способом уничтожить возбудителя, болезненный рост сразу же остановится. Таким образом, ни каллус, ни галлы не являются злокачественными раковыми образованиями.

Тем не менее, растения болеют раком. Его вызывают бактерии из семейства Ризобиевые (Rhizobiacae ), которые относятся к роду агробактерий (Agrobacterium ). На месте инфекции образуется неорганизованно делящаяся масса клеток, похожая на каллус (рис. 1). Если агробактерии убить при помощи антибиотиков, то рост опухоли по-прежнему продолжится. Возникает злокачественная опухоль, рост которой растение не может контролировать.
Рис. 1. Корончатый галл - злокачественная опухоль, вызванная агробактериями (Agrobacterium tumefaciens ) на ветке сирени. Изображение (увеличить

При анализе содержания гормонов в опухоли оказывается, что уровень и ауксинов, и цитокининов повышен . Каждая клетка опухоли способна самостоятельно производить эти гормоны и больше не зависит от остальных частей растительного организма.

Агробактерии - природные «генные инженеры»

Агробактерии поражают преимущественно двудольные растения, среди которых наиболее заметны опухоли на деревьях и кустарниках. Агробактерии вызывают рак корней винограда (возбудитель - A. vitis , агробактерия «виноградная»), корней малины (A. rubi , агробактерия «малинная»), болезнь корончатого галла у широкого круга хозяев (A. tumefaciens , агробактерия «опухолеобразующая»). Необычное заболевание, проявляющееся как образование из массы корней, густо покрытых корневыми волосками - болезнь «косматого » или «бородатого » корня - также вызывается агробактериями (A. rhizogenes , агробактерия «корнеродная»). Есть среди агробактерий и сравнительно «мирный» (непатогенный) вид - A. radiobacter (агробактерия «корневая»), который обитает в тонком слое почвы, окружающем корни растений. A. radiobacter питается корневыми выделениями, но не наносит ущерба самим растениям. Чем же вызваны инфекционные свойства большинства видов агробактерий?

Генетический материал бактерий состоит из нуклеоида (крупная кольцевая молекула ДНК, в которой хранится «основная» генетическая информация), и плазмид (более мелких кольцевых молекул ДНК с меньшей информационной ёмкостью). Свойство агробактерий поражать те или иные виды растений «запрограммировано» именно в плазмидах. В зависимости от типа заболевания эти плазмиды обозначают как Ti-плазмиды (от англ. tumor inducing - вызывающие опухоли) и Ri-плазмиды (от англ. root inducing - вызывающие [косматые] корни). При потере плазмид агробактерии теряют свойство вызывать соответствующие заболевания.

Плазмиды обладают целым рядом интересных и практически важных свойств.
, в одной клетке агробактерии не могут встретиться не только Ti- и Ri-плазмиды, но даже две разных Ti-плазмиды! Каким-то образом первая «поселившаяся» в бактерии плазмида не допускает проникновения и размножения других плазмид, похожих на неё.

Плазмиды способны передаваться от одной бактериальной клетки к другой. Как это ни парадоксально, в почве только 1–5% клеток свободно живущих агробактерий «вооружены» Ti- или Ri-плазмидами. Но как только начинается процесс инфекции, плазмиды активно размножаются и передаются от бактерии к бактерии.

Ti- и Ri-плазмиды (по сравнению с другими плазмидами бактерий) имеют большие размеры: около 200–300 тыс. пар оснований. Это не позволяет при помощи стандартных методик отделить ДНК этих плазмид от ДНК нуклеоида, что создаёт определённые трудности в работе молекулярных биологов с плазмидами.

Какие же гены несут в себе Ti-плазмиды? Для заражения растений наиболее важным оказывается Vir-район (от англ. virulence - способность поражать [растения], патогенность), в котором закодировано довольно много генов. Постоянно работают только два гена: VirA и VirG . Белок VirA - это рецептор на особое вещество фенольной природы - ацетосирингон. Ацетосирингон выделяется при повреждении клеток растений. Белок VirA реагирует на ацетосирингон и передаёт сигнал на белок VirG, который активирует все остальные гены Vir-района. В результате: 1) клетки агробактерий плывут к месту поражения (ориентируясь по увеличению концентрации ацетосирингона); 2) Ti-плазмида начинает размножаться и передаваться другим бактериям того же вида; 3) появляются другие белки-продукты генов Vir-области (рис. 2).

Функции некоторых белков из Vir-района. Изображение: «Потенциал. Химия. Биология. Медицина».

Белок VirD1 совместно с белком VirD2 находят в Ti-плазмиде определённые участки, состоящие из 25 пар нуклеотидов, и разрезают их, перебрасывая ковалентную связь с конца ДНК на белок VirD2. У Agrobacterium tumefaciens таких участков два: они ограничивают так называемый Т-район (от англ. transferred - переносящийся). Одна из цепей ДНК отделяется и уходит; таким образом, в Ti-плазмиде возникает брешь. Специальная система репарации ДНК застраивает брешь новой цепью ДНК, и из той же Ti-плазмиды можно ещё раз вырезать Т-район, Ti-плазмида в целом сохраняется.

Одноцепочечная Т-ДНК, связанная с белком VirD2, в дальнейшем «одевается» при помощи белка VirE2, который не даёт ферментным системам бактериальной клетки разрушить одноцепочечную Т-ДНК.

На поверхности клетки агробактерии при помощи разнообразных белков VirB образуется аппарат для переноса ДНК из одной клетки в другую. Именно белки VirB отвечают за перемещение комплекса VirD2 с одноцепочечной ДНК из клетки агробактерии в клетку растения. Белки VirE2 также перемещаются в клетку хозяина.

Далее комплекс одноцепочечной Т-ДНК с белками VirD2 и VirE2 проникает в ядро растительной клетки. Белок VirD2 «надрезает» ДНК клетки-хозяина и встраивает Т-ДНК из Ti-плазмиды. Таким образом, происходит процесс встраивания чужеродной ДНК в ДНК клетки растения. После этого клетку растения можно считать генетически модифицированной. В процессе эволюции агробактерии «разработали» механизм получения генетически модифицированных клеток растения, т. е. стали природными «генными инженерами».

Что содержится в Т-районе

Гены, которые содержатся в Т-районе, в самой клетке агробактерии не работают, поскольку у них есть только эукариотические промоторы. Два из этих генов отвечают за биосинтез ауксинов: iaaH и iaaM . Ещё один ген - iptZ - кодирует ключевой фермент синтеза изопентениладенина (одна из форм цитокининов). Таким образом, попав в геном растения, Т-ДНК вызывает синтез как ауксинов, так и цитокининов (рис. 3). При этом клетки растения-хозяина начинают неорганизованно делиться, образуя опухоль.

После вставки Т-района в клетке растения-хозяина начинается неконтролируемый синтез ауксинов, цитокининов и опинов. Изображение: «Потенциал. Химия. Биология. Медицина».

Однако для того, чтобы деление клеток растения приносило агробактериям пользу, необходимо, чтобы они синтезировали что-либо полезное для агробактерий. Действительно, в состав Т-района входят гены биосинтеза веществ, которые образуются из аминокислот и кето-соединений. Эти вещества получили название опинов . Ни сами растения, ни другие организмы, обитающие на растениях, не могут расщепить опин. И только агробактерии способны «переваривать» тот опин, синтез которого они вызвали.

Опинов достаточно много, и каждая Ti-плазмида обеспечивает синтез своего опина (нопалина , агроцинопина , витопина , куркумопина и др.). В самой Ti-плазмиде (но не в Т-районе!) есть гены, отвечающие за «переваривание» соответствующего опина. Это объясняет, почему одна Ti-плазмида, захватив клетку агробактерии, не пускает в неё другую Ti-плазмиду, отвечающую за синтез и метаболизм другого опина.

После внедрения ДНК из Т-района клетки опухоли интенсивно делятся и продуцируют именно тот опин, который способна «переварить» агробактерия, вызвавшая данную инфекцию. Если в почве обитают два разных вида агробактерий, то при инфекции первая бактерия каким-то образом не пускает другую, которая питается иным опином.

На этом основан биологический метод борьбы с агробактериальным раком. Как вы знаете, есть непатогенные агробактерии. Они также «не пускают» другие виды агробактерий к корневой системе растения, через которую и происходит поражение. Если заранее обработать растение определёнными штаммами A. radiobacter , то растение не заболеет ни корончатым галлом, ни корневым раком, ни болезнью бородатого корня.

Удивительно, но у некоторых агробактерий в составе плазмид есть не один, а два или даже три Т-района, каждый из которых «обрамлён» последовательностями из 25 нуклеотидов. В случае A. rhizogenes эти участки называют ТL и TR-районами, а у A. rubi есть TA, TB и TC соответственно. Наиболее удивительно заболевание бородатого (косматого) корня. В TR-районе содержатся те же гены, что и у остальных агробактерий. Они отвечают за синтез ауксинов, цитокининов и опинов. В TL-районе содержатся гены, отвечающие за то, чтобы неактивные формы ауксинов переходили в активные. Оказывается, для успешной инфекции достаточно только TL-района! И тогда клетки опухоли активируют «запасные» формы ауксинов самого растения, а это приводит к ризогенезу , т. е. к образованию многочисленных придаточных корней на месте опухоли.

Итак, . К месту опухоли притекает всё больше и больше аминокислот, но они постоянно «выводятся из оборота» растения, т. к. преобразуются в новые порции опинов, которые служат источником питания для соответствующего штамма агробактерий. «Избавиться» от чужеродной ДНК растительные клетки уже не могут. Рост клеток и синтез опинов продолжаются даже в том случае, когда агробактерии по каким-либо причинам погибли.

Получение генетически модифицированных растений при помощи агробактерий

Оказывается, гены Vir-района переносят в клетку растений любые последовательности ДНК, которые заключены между двумя 25-нуклеотидными повторами. Гены из Т-района всё равно «не работают» в клетках агробактерий. Поэтому агробактерий можно «обмануть»: вместо «нормальных» генов включить в Т-ДНК те гены, которые нужны человеку. Тогда вся система инфекции сработает, но в растение попадут совсем другие гены!

Тем не менее, при воплощении в жизнь такой, на первый взгляд, простой идеи возникли некоторые сложности. Главная из них - размеры Ti-плазмид, которые не позволяют выделять их из клеток агробактерий. Тогда учёные решили разделить Ti-плазмиду на две части: в одной оставить Vir-район, а в другой (теперь уже маленькой) - Т-район. Плазмиду с Vir-районом называют «помощником» (или хэлпером, от англ. help - помогать).

Маленькую плазмиду с искусственным Т-районом можно выделять из клеток бактерий, «резать/клеить» при помощи специальных ферментов в пробирках, вставляя нужные гены в Т-район, а затем размножать в кишечных палочках (Escherichia coli ) и переносить в агробактерии.

Чтобы ни одна из плазмид «не потерялась», каждую снабдили генами устойчивости к разным антибиотикам. Теперь, выращивая бактерии на среде с определённой комбинацией антибиотиков, можно отбирать клетки, в которые попала либо одна из плазмид, либо обе.

Итак, задача практической работы с Ti-плазмидой решена. Но как понять, произошёл ли перенос ДНК из Т-района? Ведь теперь в клетки не попадают гены биосинтеза ауксинов и цитокининов, и опухоль образоваться не может.

Кроме интересующего учёных гена (так называемого гена интереса) в Т-район обязательно вставляют ген устойчивости к какому-нибудь третьему антибиотику, который действует на растительные клетки. В среду кроме питательных веществ добавляют ауксин и цитокинин, а также антибиотики в новом сочетании: так, чтобы агробактерии и растительные клетки без вставленного Т-района погибли, а выжили бы генетически модифицированные клетки. Как вы помните, ауксин и цитокинин нужны для деления растительных клеток. В итоге должна вырасти каллусная масса из генетически модифицированных клеток. Получить из неё новые растения можно всё теми же методами биотехнологии.
Репортёрный ген глюкуронидазы позволяет по синей цветной реакции определить, что растение генетически модифицировано. Фото с сайта www.phys.ufl.edu.

На всех этапах работы хорошо бы посмотреть, в какие именно клетки попала искусственная Т-ДНК. Для этого в Т-район вводят ещё один ген - репортёрный . Основное требование к нему - продукт гена не должен встречаться в обычных растительных клетках и должен легко и быстро выявляться. В качестве репортёрных на сегодня чаще всего используют два гена: глюкуронидазы (из бактерий) и зелёного флуоресцирующего белка (из медузы). Глюкуронидаза даёт цветную реакцию с синтетическим веществом, при которой генетически модифицированные клетки окрашиваются в тёмно-синий цвет (рис. 4). Есть только один недостаток: клетки при таком окрашивании погибают. Зелёный флуоресцентный белок светится при освещении светом с определённой длиной волны, и клетки не погибают (рис. 5).

Зелёный флуоресцентный белок в качестве репортёра позволяет наблюдать за живыми клетками в растениях. Фото с сайта www.genomenewsnetwork.org.

И лишь на последних этапах проверяют, работает ли ген интереса (как правило, приходится проводить многочисленные анализы на наличие определённых последовательностей ДНК, РНК и на сам белковый продукт гена интереса).

Таким образом, в любом генетически модифицированном растении кроме гена интереса есть «балласт» или «генетический мусор», представленный как минимум геном-репортёром и геном устойчивости.

При помощи различных ухищрений с геном интереса можно получить растения, содержащие новый белковый продукт, которого раньше в клетках растений не было. Или, наоборот, можно «выключить» какой-нибудь собственный ген растения, «заставить» его работать в других органах и тканях и т. д. Это позволяет учёным детально исследовать работу генома растения. Но у генетически модифицированных растений есть и практическое применение.

Растения-ГМО: практическое применение

В последнее время в прессе и на телевидении часто обсуждают вопросы, связанные с генетически модифицированными растениями и потенциальным риском употребления продуктов питания, изготовленных из них. К сожалению, . Как результат в обществе и даже своеобразный «экологический терроризм ». Когда в конце 1990-х из Германии в Юго-Восточную Азию хотели отправить партию генетически модифицированного риса , «зелёные» пошли на захват самолёта (! ) и уничтожили всю партию семян. Прошлым летом в Австралии на территорию одного из научных центров проникли те же «зелёные террористы» и уничтожили посевы трансгенной пшеницы , над которыми исследователи работали около 10 лет. Эта акция отбросила назад исследования пшеницы и нанесла научному центру убытки, которые исчисляются миллионами долларов.

Это, конечно же, крайние проявления. Но каждого современного человека беспокоит вопрос: нужно ли бояться генетически модифицированных растений? Что они несут миру: пользу или вред? Однозначного ответа не существует. И с каждым конкретным случаем применения ГМО нужно разбираться отдельно.

Какие же проекты с участием трансгенных растений человечество разрабатывает сегодня?

Устойчивость к вредителям

Насекомые-вредители при вспышках численности могут уничтожать существенную часть урожая (если не весь урожай). Для борьбы с ними применяют довольно агрессивные вещества - пестициды (от лат. pestis - вредоносный бич, зараза и caedo - убивать). Пестициды уничтожают и вредных, и полезных насекомых (например пчёл , шмелей , жужелиц ), оказывают влияние на почвенных обитателей, а при попадании в водоёмы пестициды могут вызвать гибель рыб. Применение пестицидов опасно в первую очередь для людей, работающих в сельском хозяйстве: именно они готовят растворы, проводят опрыскивания, работают в поле, пока пестицид продолжает действовать. К нам на стол попадает лишь ничтожная часть пестицидов, которые по большей части уже разложились. Избавиться от остатков пестицидов можно, тщательно вымыв овощи и фрукты или очистив кожицу.

Отказаться от применения пестицидов пока ещё нельзя: тогда размножатся вредители и человечество останется без урожая. А нельзя ли сделать культурные растения несъедобными для насекомых?

Здесь на помощь приходит генная инженерия растений. Насекомые, как и любые другие живые существа, болеют. Одно из заболеваний вызывает бактерия тюрингская палочка (Bacillus thuringiensis ). Она выделяет белок-токсин, нарушающий пищеварение у насекомых (но не у теплокровных животных!). Этот белок обозначают BT-токсин (от первых букв латинского названия тюрингской палочки). Дальше необходимо выделить ген, отвечающий за синтез ВТ-токсина, включить его в состав искусственного Т-района ДНК, размножить плазмиду в кишечной палочке, дальше перенести плазмиду в агробактерию с плазмидой-хелпером. Т-район из агробактерии внедрится в геном растения (например, хлопчатника). На искусственной среде с антибиотиками можно отобрать трансформированные клетки и получить из них генетически модифицированные растения (рис. 6). Теперь в хлопчатнике будет синтезироваться ВТ-токсин, и он станет устойчивым к вредителям.
Схема получения генетически модифицированного хлопчатника, устойчивого к насекомым. Изображение: «Потенциал. Химия. Биология. Медицина».

Вредители хлопчатника - актуальная проблема для тропических регионов. Так, вспышки численности хлопкового долгоносика в XIX–XX вв. были одной из причин экономических спадов в США. С 1996 года на поля внедряется генетически модифицированный хлопчатник, устойчивый к насекомым (в частности - к хлопковому долгоносику). В Индии - одной из лидирующих стран-производителей хлопка - на сегодня около 90% площадей заняты генетически модифицированным хлопком. Так что 9 шансов из 10, что вы уже носите! Как-то об этом в дискуссиях по ГМО...

Заманчиво получить не только технические, но и пищевые растения, устойчивые к вредителям (например, картофель, устойчивый к колорадскому жуку). Это позволит фермерам существенно сократить расходы на обработку полей пестицидами и повысит урожай. Для того чтобы получить больше прибыли, ГМО, безусловно, необходимы. В нашей стране уже есть официальное разрешение на использование 4 сортов картофеля, устойчивого к колорадскому жуку: два сорта «наши», и два - иностранного происхождения. Но действительно ли такой картофель безопасен?

Появление в пище любого нового белка (например, ВТ-токсина) у чувствительных людей может вызывать аллергию , снижение общего иммунитета к заболеваниям и другие реакции. Но этот эффект возникает при любом изменении традиционного рациона. Например, все те же явления возникали просто при «внедрении» соевого белка : для европейцев он оказался потенциальным аллергеном, снижал иммунитет. То же самое будет с людьми, переезжающими на новое место, резко отличающееся по традициям питания. Так, для коренных народов Крайнего Севера опасной может оказаться молочная диета или питание обычным (заметим - нисколько не модифицированным!) картофелем. Русские бобы (Vicia faba ), которые традиционно использовали у нас в стране как овощ, ядовиты для жителей Средиземноморья и т. д. Всё это не означает, что нужно повсеместно бороться с употреблением сои, молока, картофеля или бобов, просто необходимо учитывать индивидуальную реакцию.

Таким образом, при внедрении генетически модифицированных пищевых растений часть людей окажется к ним довольно чувствительной, но другие так или иначе приспособятся. Но чувствительные люди должны точно знать, какие продукты приготовлены с применением ГМО.

Полезно знать, что сегодня в Россию можно ввозить и использовать в пищевых технологиях 16 сортов и линий генетически модифицированных растений - в основном устойчивых к тем или иным вредителям. Это кукуруза, соя, картофель, сахарная свёкла, рис. От 30 до 40% продуктов на современном рынке уже содержат компоненты, полученные из ГМО. Парадоксально, что при этом выращивать генетически модифицированные растения у нас в стране не разрешается.

В утешение скажем, что в США - стране, которая выращивает 2/3 мирового урожая генетически модифицированных растений - до 80% продуктов содержат ГМО!

Устойчивость к вирусам

Поражение растений вирусами уменьшает урожай в среднем на 30% (рис. 7). Для некоторых культур цифры потерь ещё выше. Так, при заболевании ризоманией теряется 50–90% урожая сахарной свёклы. Корнеплод мельчает, образует многочисленные боковые корни, содержание сахара снижается. Это заболевание впервые было обнаружено в 1952 году в Северной Италии и оттуда «победным маршем» в 1970-х гг. распространилось во Францию, на Балканский полуостров, а в последние годы - в южные регионы свеклосеяния нашей страны. Против ризомании не помогают ни химическая обработка, ни севооборот (вирус сохраняется в почвенных организмах не менее 10 лет!).
Рис. 7. Симптомы вирусного поражения на листе растения. Изображение: «Потенциал. Химия. Биология. Медицина».

Ризомания - это всего лишь один пример. С развитием транспорта вирусы растений вместе с урожаем быстро перемещаются по планете, минуя таможенные барьеры и государственные границы.

Единственным эффективным способом борьбы со многими вирусными болезнями растения оказывается получение устойчивых генетически модифицированных растений. Для повышения устойчивости из генома вируса-возбудителя ризомании выделяют ген белка капсида. Если этот ген «заставить» работать в клетках сахарной свёклы, то резко повышается устойчивость к «ризомании».

Есть и другие проекты, связанные с повышением устойчивости к вирусам. Например, огурцы, дыни, арбузы, кабачки и тыква поражаются одним и тем же вирусом мозаики огурца . Кроме того, в круг хозяев входят томаты, салат-латук, морковь, сельдерей, многие декоративные и сорные растения. Бороться с вирусной инфекцией очень трудно. Вирус сохраняется на многолетних растениях-хозяевах и на остатках корневой системы в почве.

Как и в случае с ризоманией, против вируса мозаики огурца помогает образование белка его собственного капсида в растительных клетках. На сегодня получены устойчивые к вирусу трансгенные растения огурцов, кабачков и дыни.

Ведутся работы и по повышению устойчивости к другим вирусам сельскохозяйственных растений. Но пока ещё, за исключением сахарной свёклы, устойчивые генетически модифицированные растения мало распространены.

Устойчивость к гербицидам

В развитых странах расходам на горюче-смазочные материалы все больше предпочитают «разориться» на разнообразные химикаты. Одна из важных статей расходов - вещества, уничтожающие сорняки (гербициды ). Применение гербицидов позволяет лишний раз не гонять тяжёлую технику по полю, меньше нарушается структура почвы. Слой отмерших листьев создаёт своеобразную мульчу, которая уменьшает эрозию почвы и сберегает влагу. Сегодня разработаны гербициды, которые в течение 2–3 недель полностью разлагаются в почве микроорганизмами и практически не наносят вреда ни животным, обитающим в почве, ни насекомым-опылителям.

Однако у гербицидов сплошного действия есть существенный недостаток: они действуют не только на сорные, но и на культурные растения. Есть определённый успех в создании так называемых селективных гербицидов (таких, которые действуют не на все растения, а на какую-то группу). Например, есть гербициды против двудольных сорняков. Но при помощи селективных гербицидов невозможно уничтожить все сорняки. Например, останется пырей - злостный сорняк из семейства злаковых.

И тогда возникла идея: сделать культурные растения устойчивыми к гербицидам сплошного спектра действия! Благо, у бактерий есть гены, отвечающие за разрушение многих гербицидов. Достаточно просто пересадить их в культурные растения. Тогда вместо постоянных прополок и рыхления междурядий над полем можно распылить гербицид. Культурные растения выживут, а сорняки погибнут.

Именно такие технологии предлагают фирмы, производящие гербициды. Причём выбор трансгенных семян культурных растений зависит от того, какой гербицид фирма предлагает на рынке. Каждая фирма разрабатывает растения-ГМО, устойчивые к своему гербициду (но не к гербицидам конкурентов!). Ежегодно в мире на полевые испытания передают 3–3,5 тыс. новых образцов растений, устойчивых к гербицидам. Даже испытания устойчивых к насекомым растений отстают от этого показателя!

Устойчивость к гербицидам уже широко применяется при выращивании люцерны (кормовая культура), рапса (масличное растение), льна , хлопчатника , кукурузы , риса , пшеницы , сахарной свёклы , сои .

Традиционный вопрос: опасно или безопасно выращивание таких растений? Технические культуры (хлопок, лён), как правило, не обсуждают: их продукты человек не использует в пищу. Конечно, в генетически модифицированных растениях появляются новые белки, которых прежде не было в пище человека, со всеми вытекающими отсюда следствиями (см. выше ). Но есть ещё одна скрытая опасность. Дело в том, что применяемый в сельском хозяйстве гербицид - это не химически чистое вещество, а некоторая техническая смесь. В неё могут добавлять детергенты (для улучшения смачивания листьев), органические растворители, промышленные колоранты и другие вещества. Если содержание гербицида в конечном продукте строго контролируют, то за содержанием вспомогательных веществ, как правило, следят плохо. Если содержание гербицида будет сведено к минимуму, то о содержании вспомогательных веществ остаётся только догадываться. Эти вещества могут попадать также в растительное масло, крахмал и другие продукты. В будущем предстоит разрабатывать нормативы на содержание этих «неожиданных» примесей в конечных продуктах.

Суперсорняки и «утечка генов»

Успехи в создании генетически модифицированных растений, устойчивых к вредителям и гербицидам, породили ещё одно сомнение: а вдруг сорняки каким-то образом «завладеют» генами, встроенными в геном культурных растений, и станут устойчивыми ко всему? Тогда появится «суперсорняк », который будет невозможно истребить ни с помощью гербицидов, ни с помощью насекомых-вредителей!

Такой взгляд по меньшей мере наивен. Как мы уже говорили, фирмы-производители гербицидов создают растения, устойчивые к производимому гербициду, но не к гербицидам конкурентов. Даже в случае приобретения одного из генов устойчивости можно использовать другие гербициды для борьбы с «суперсорняком». Устойчивость к насекомым ещё не определяет устойчивости к любым вредителям. Например, нематоды и клещи смогут по-прежнему поражать это растение.

Кроме того, остаётся неясным, каким образом сорняк приобретёт гены от культурного растения. Единственная возможность - если сорное растение является близким родственником культурному. Тогда возможно опыление пыльцой генетически модифицированного растения, и произойдёт «утечка генов ». Это особенно актуально в районах древнего земледелия, где в дикой природе до сих пор обитают виды растений, близкие к культурным. Например, из трансгенного рапса с пыльцой новые гены могут переноситься на сурепку или дикие виды рода Капуста (Brassica ).

Гораздо важнее, что посадки трансгенных растений вызывают «загрязнение» местного генетического материала. Так, кукуруза относится к ветроопыляемым растениям. Если один из фермеров посадил трансгенный сорт, а его сосед - обычный, возможно переопыление. Гены из генетически модифицированного растения могут «утечь» на соседнее поле.

Верно и обратное: растения-ГМО могут опыляться пыльцой обычных сортов, и тогда в следующих поколениях уменьшится доля генетически модифицированных растений. Это произошло, например, в Австралии при первых попытках внедрить генетически модифицированный хлопчатник: признак устойчивости к насекомым «пропал» из-за «разбавления» пыльцой обычных сортов с соседних полей. Пришлось более внимательно отнестись к семеноводству хлопчатника и внедрять устойчивые сорта ещё раз.

Растения-ГМО: проекты в перспективе

В текущем теме речь пойдёт о тех проектах, которые пока ещё не вышли из стен лабораторий. Может быть, какие-то из этих разработок пригодятся человечеству. А заглянуть в будущее всегда интересно.

Изменение состава растительного белка

Заметную часть органических веществ тела человека составляют белки. Для полноценного питания мы должны употреблять ту или иную белковую пищу. Белки состоят из аминокислот, часть которых для человека незаменимы. Это метионин , лизин , триптофан , фенилаланин , лейцин , изолейцин , треонин и валин . (В детском питании также важны гистидин и аргинин.)

Белки, которые содержатся в растениях, как правило, не сбалансированы по пропорции незаменимых аминокислот. Так, (которые мы получаем с хлебом и макаронами) , а в белках. Поэтому в рацион включают относительно дорогие продукты животного происхождения, более сбалансированные по аминокислотному составу: мясо , рыбу , творог , молоко и др. Растительные белки дешевле, их добавка снижает стоимость продуктов. Но при этом человек недополучает некоторых незаменимых аминокислот. Их дефицит особенно остро чувствуется при однообразной диете. Поэтому возникла идея получить трансгенные растения, в которых «исправлен» баланс незаменимых аминокислот. Как подступиться к такой задаче?

Рис. 8. Качество хлеба зависит от содержания белков клейковины - глютенов . Слева - хлеб с низким, в центре - с нормальным и справа - с повышенным содержанием глютенов. Изображение: «Потенциал. Химия. Биология. Медицина».

Запасные белки зерновых злаков изучают очень активно. Их делят на несколько групп, из которых самые важные для питания - белки клейковины . Вы сами легко можете получить клейковину, если завяжете в марлевый мешочек пшеничную муку и прополощете в воде. Крахмальные гранулы вымоются, а клейкие белки останутся на марле. Главные белки клейковины - глютены (от лат. gluten - клей). Два основных глютена пшеницы - глиадин и глютелин. Именно от качества клейковины зависит пышность выпекаемого хлеба и характерный аромат: в глютенах много метионина и цистеина, которые при нагревании дают летучие соединения серы (рис. 8). Высокое содержание глютенов позволяет раскатать тесто в особенно тонкий пласт, что актуально при выпечке пиццы и аналогичных продуктов. Кроме того, «тягучесть» теста важна для формовки макаронных изделий. Содержание клейковины достаточно высокое в твёрдой пшенице (Triticum durum ). Именно её используют для производства макаронных изделий. Твёрдая пшеница особенно хорошо растёт в Поволжье, и наша страна является важным производителем зерна для макаронной промышленности.

Меньше клейковины в мягкой пшенице (Triticum aestivum ) (рис. 9). Эта пшеница более урожайна и вполне пригодна для выпечки хлеба (но не для пиццы или производства макарон). Кормовые сорта мягкой пшеницы содержат ещё меньше клейковины, а урожай дают больше, чем «хлебные» сорта. В современных технологиях этот «дефект» кормовых пшениц можно исправить, если добавить глютены и другие поверхностно-активные вещества, которые способствуют стабилизации пузырьков газа, необходимых для создания «пористой» структуры хлеба.

Рис. 9. Triticum aestivum ). Изображение: «Потенциал. Химия. Биология. Медицина».

В муке риса содержание клейковины крайне низкое. Это не позволяет выпекать из неё хлеб. Добавка глютенов из пшеницы или других злаков позволяет получить «рисовый хлеб».

Таким образом, потребности в глютенах у современной пищевой промышленности очень велики. Для увеличения «вязкости» и стабилизации пористой структуры их добавляют во многие продукты питания: мороженое, йогурты, кетчупы, шоколадную пасту, карамель и др. На сегодня уже разработана (говядины, птицы или даже рыбы) из специально спряденных подкрашенных и ароматизированных волокон глютенов. Дело совсем за немногим: изменить состав растительного белка так, чтобы увеличить в нём долю лизина. Тогда диетическая ценность глютенов приблизится к мясным продуктам. Именно это и пытаются сделать методами генной инженерии.

Но есть и оборотная сторона медали: у некоторых людей есть наследственно обусловленная непереносимость глютенов, а у других возникает аллергия на глютены. Несмотря на то, что доля этих людей невелика (0,5–1%), генные инженеры хотят «выключить» гены глютенов, чтобы получить диетические «безглютеновые» продукты.

Аналогичные проекты по изменению белкового состава зерновок риса ведутся сейчас в Японии. Учёные пытаются изменить состав проламина - главного запасного белка риса. Есть аналогичная идея «выключить» ген проламина риса, чтобы создать диетический продукт, пригодный для питания аллергиков.

«Золотой рис»

Один из нашумевших европейских проектов, стартовавших в 1990-х годах, был «золотой рис » с улучшенным витаминным составом. Основная идея этого проекта - решить проблему дефицита провитамина А (каротина), которая возникает у жителей Юго-Восточной Азии при однообразной диете, состоящей в основном из риса. Из нарциссов учёные выделили несколько генов, отвечающих за биосинтез каротина. Далее эти гены были встроены в геном риса, и у зерновок появился «золотистый» цвет.

Однако проекту «золотого риса» предстояло нелёгкое будущее. Дело в том, что каждое достижение (в том числе и научное изобретение) охраняется законом об авторских правах. В работе над «золотым рисом» участвовало несколько групп европейских учёных. И вот когда проект оказался близким к завершению, люди не смогли договориться между собой, какая часть прибыли кому достанется. А без этого было невозможно продвижение «золотого риса» на поля.

В конце концов, все авторские права были выкуплены у учёных благотворительными организациями, и «золотой рис» отправился в Юго-Восточную Азию, где ему предстоит акклиматизироваться, поучаствовать в скрещиваниях с традиционными сортами и дать начало сортам с зёрнами, обогащёнными каротином.

Негниющие томаты и супербаклажаны

Каждый огородник знает, что хорошо вызревшие томаты хранятся очень недолго, особенно если они хотя бы немного повреждены. Мякоть плода быстро становится мягкой, начинается брожение, а затем в ранки проникают мицелиальные грибы , и плоды безвозвратно портятся. Достаточно одного испорченного плода, как размягчение охватывает весь ящик, и его приходится выбрасывать.

Особенно трудно сдать томаты на переработку на юге, где бывают большие урожаи, и заводы по производству томатной пасты и кетчупа просто не успевают справляться. И, конечно же, такими томатами трудно торговать в супермаркетах, где к плодам прикасаются руки сотен людей, и томаты легко повреждаются.

Размягчение томатов вызывает этилен - газообразное вещество, которое вырабатывается в созревающих плодах. В ответ на этилен в тканях плода синтезируются ферменты - пектиназы , под действием которых и происходит размягчение клеточных стенок (и, соответственно, всего плода). Более того, каждый плод, на который подействовал этилен, сам становится новым источником этилена. Вот почему стоит только одному плоду испортиться, как размягчение охватывает весь ящик. Таким образом, чтобы увеличить срок хранения плодов, можно пойти двумя путями: за счёт генетической модификации либо снизить образование этилена в плодах, либо снизить образование пектиназ (рис. 10).

Рис. 10. Обычные томаты (слева) и генетически модифицированные томаты со сниженным синтезом этилена (справа). Изображение: «Потенциал. Химия. Биология. Медицина».

Генетически модифицированные томаты с повышенной лёжкостью уже созданы. Есть аналогичные проекты по увеличению сроков хранения и других овощей и фруктов.

Казалось бы, увеличение сроков хранения - это хорошо. На последнем этапе созревания происходит также и усиление запаха плодов, поэтому генетически модифицированные томаты оказались менее ароматными, чем обычные сорта. Теперь генные инженеры работают над усилением запаха. Наверное, со временем на прилавках появятся не просто негниющие томаты, но одновременно они будут благоухать на весь магазин.

Знания о гормонах растений помогают повысить урожай. Обработка ауксинами увеличивает размер плодов. Этот эффект можно получить, в частности, у баклажанов (Solanum melongena ). В одном из проектов удалось получить генетически модифицированные баклажаны, у которых в развивающейся семенной кожуре образуется особенно много ауксинов. Результат превзошёл все ожидания: плоды баклажанов увеличились в 4 раза! Всё было бы хорошо, если бы не маленькая деталь: из-за дефектов в развитии семенной кожуры нормальные семена получить так и не удалось.

История о шампунях и порошках

Поверхностно-активные вещества (детергенты ) широко распространены в нашей жизни. Возьмите с полки в ванной наугад флакон с шампунем, тюбик зубной пасты, какое-нибудь увлажняющее средство для кожи или для мытья посуды, стиральный порошок. Внимательно изучив их состав, вы обнаружите там производные лавровой (додекановой ) кислоты , более или менее удачно переведённые на русский язык (рис. 11). Чаще всего это лаурилсульфат (додецилсульфат ) натрия . Мировые потребности в этом веществе постоянно возрастают. Откуда же берут лавровую кислоту?
Рис. 11. Детергенты на основе лавровой (додекановой) кислоты входят в состав моющих и косметических средств. Изображение: «Потенциал. Химия. Биология. Медицина»

Как следует из названия, впервые она была выделена из лавра благородного . Жирное масло, имеющееся в семенах, содержит некоторое количество производных лавровой кислоты. Но лавр совершенно не годится как промышленный источник лавровой кислоты: семян он даёт сравнительно немного, их трудно собирать и перерабатывать.

Сегодня лавровую кислоту получают в основном из масла гвинейской масличной пальмы (Elaeis guineensis ) (рис. 12). Это растение даёт рекордный урожай среди всех масличных культур - 4–8 тонн масла с гектара в год!

Но у гвинейской масличной пальмы есть и недостатки. Растёт она исключительно в тёплом влажном экваториальном климате между 18° северной и южной широты. Площади, пригодные для выращивания масличной пальмы, очень ограничены. Кроме того, это растение не размножается вегетативно - пальму можно вырастить только из семян. В течение 4–6 лет масличная пальма растёт, формируя розетку листьев, и лишь после этого формирует ствол. Максимально плодоношение начинается с 15–20 года после посева и продолжается примерно до 70 лет. Поэтому большие рощи масличной пальмы часто принадлежат королевским фамилиям и передаются по наследству.

Рис. 12. Гвинейская масличная пальма (Elaeis guineensis) - промышленный источник лавровой кислоты. Изображение (увеличить): «Потенциал. Химия. Биология. Медицина».

Основными потребителями пальмового масла являются развитые страны (Европа, Америка, Япония). Чтобы снизить зависимость от экспорта и производить моющие средства на основе лавровой кислоты, хорошо бы иметь какой-нибудь альтернативный источник.

Выбор учёных пал на рапс (Brassica napus ) (рис. 13). Рапс можно вырастить в течение одного сезона. Для умеренной зоны Северного полушария это самая рентабельная масличная культура. Единственный его недостаток - в нём нет заметных количеств лавровой кислоты. И получение трансгенного рапса с повышенным содержанием лавровой кислоты кажется вполне естественным.
Рис. 13. Brassica napus ) - важнейшее масличное растение умеренной зоны. Изображение: «Потенциал. Химия. Биология. Медицина».

Для начала необходим ген, который отвечал бы за изменение жирнокислотного состава масла. Для этого в мировой флоре был найден чемпион по содержанию лавровой кислоты - «калифорнийский лавр » Umbellularia californica . Из этого растения был выделен ген, ответственный за синтез лавровой кислоты. После пересадки этого гена в генетически модифицированном рапсе 2 из 3 остатков жирных кислот в составе масла были представлены лавровой кислотой. Теперь европейские страны могут быть спокойны: без шампуней и стиральных порошков они не останутся, генетически модифицированный рапс поможет им получать лавровую кислоту на своей собственной территории.

Модификация растительных жиров

Рапс - очень популярный участник и других проектов с применением генетически модифицированных растений. Дело в том, что рапс - близкий родственник известного модельного растения - резуховидки Таля (Arabidopsis thaliana ). Геном арабиопсис известен полностью, поэтому легко найти гены, отвечающие за биосинтез тех или иных компонентов масла семян. А у родственных растений гены также очень похожи. Знания, добытые при изучении модельного растения, легко потом применить к рапсу. Чего же хотят учёные, изменяя состав растительного масла?

Среди жирных кислот, входящих в состав запасных веществ растительного масла, можно выделить насыщенные и ненасыщенные жирные кислоты. Ненасыщенные жирные кислоты образуются из насыщенных в результате действия особых ферментов - десатураз . Высокая активность десатураз приводит к увеличению доли остатков ненасыщенных жирных кислот в растительном масле и наоборот.

Каждый, кто хоть раз соприкасался с кулинарией, знает, что после неоднократного использования растительного масла для жарки в конце концов появляется характерный запах и вкус «пригари». Это происходит потому, что при нагревании к двойным связям присоединяется кислород. Если бы двойных связей было меньше, растительное масло можно было бы использовать не в одном, а во многих циклах жарки. Это качество интересно прежде всего изготовителям картофельных чипсов, картофеля-фри, попкорна и других продуктов, при выработке которых приходится нагревать растительное масло. Перед генными инженерами стоит задача уменьшить содержание ненасыщенных жирных кислот в растительном масле, чтобы получить «долгоиграющее» масло для различных производств. Это возможно при «выключении» генов десатураз в масличных растениях.

Тем не менее, с точки зрения полезности продукта, для человека лучше, если в растительном масле будет много ненасыщенных жирных кислот. В нашем организме нет десатураз жирных кислот, поэтому состав липидов во многом зависит от поступающей пищи. При усилении активности десатураз в генетически модифицированных масличных растениях повысится доля ненасыщенных жирных кислот, что полезно в диетическом питании. В этом заинтересованы производители «салатного» масла, майонеза и других продуктов, где по технологии растительное масло нагревать не нужно.

Окисление растительного масла может происходить не только на подогретой сковороде. Льняное масло содержит большое количество линолевой и линоленовой кислот (жирные кислоты с двумя и тремя двойными связями соответственно; общая сумма ненасыщенных жирных кислот - до 90%). При взаимодействии с кислородом воздуха даже при комнатной температуре происходит окисление двойных связей. При этом через кислород между молекулами, входящими в состав льняного масла, образуются ковалентные сшивки. Льняное масло «высыхает», образуя тонкую прочную плёнку. Это свойство используется при изготовлении масляных красок и льняной олифы.

В масле видов рода Aleurites - тунгового дерева - ещё большее содержание ненасыщенных кислот (до 93–94%, из которых до 83% - с тремя двойными связями!). Тунговое масло используют для производства особо прочных быстро высыхающих лаков и специальных водоотталкивающих пропиток для дерева. К сожалению, производство льняного и тунгового масел не удовлетворяет растущие потребности лакокрасочной промышленности. Генные инженеры пытаются изменить состав рапсового масла так, чтобы оно стало пригодным для изготовления лаков и красок.

Одна из «экзотических» жирных кислот, входящая в состав масла рапса, - эруковая кислота . С одной стороны, эруковая кислота снижает пищевую ценность рапсового масла. С другой стороны, эруковая кислота в больших количествах используется при синтезе некоторых полимеров. Выделив из рапса гены, отвечающие за биосинтез эруковой кислоты, можно решить сразу две задачи: создать генетически модифицированный рапс со сниженным содержанием эруковой кислоты (для пищевого использования) и с повышенным содержанием эруковой кислоты (для химической промышленности).

В европейских странах начали задумываться над тем, что запасы нефти небезграничны. Но от машин и личных автомобилей человечество отказываться пока не собирается. Поэтому возникла идея заменить бензин на горючее из возобновляемых биологических источников. Существует проект по разработке «биодизеля » - смеси растительного масла и спирта, которую можно было бы заливать в двигатели внутреннего сгорания. Пока что такие смеси горят с образованием копоти, что засоряет двигатель и снижает сроки его работы. Идёт работа над повышением октанового числа этих смесей. Чтобы модифицировать состав масла в нужном направлении, также собираются использовать генетически модифицированные масличные растения.

Несмотря на кажущийся прогресс в области модификации растительных жиров, многие проекты так и не вышли на промышленные плантации. Дело в том, что растения «не хотят» надолго включать чужие гены. Через какое-то время генно-инженерная конструкция, вставленная в ДНК растений, может «замолчать» (явление сайленсинга , silencing). Если речь идёт о генах устойчивости к гербицидам, то все растения, у которых «замолчали» эти гены, после обработки гербицидами попросту погибнут. То же касается генов устойчивости, например, к вирусным заболеваниям: их семена не попадут в семенной фонд, и останутся только те растения, у которых генно-инженерная конструкция устойчиво работает.

Совсем другое дело, когда ген интереса не является жизненно важным для растения. Действительно, даже если доля ненасыщенных жирных кислот снизится до прежнего уровня, то растения рапса не погибнут. Проконтролировать жирнокислотный состав у каждого растения в поле практически невозможно. Поэтому со временем генетически модифицированный рапс может вернуться к исходному составу масла, не потеряв при этом вставленной в него чужеродной ДНК.

Повышение холодостойкости

С изменением состава жирных кислот связана проблема устойчивости растений к низким температурам. любых клеток зависит от в составе липидов. Сравнивая говяжий жир (с преобладанием насыщенных жирных кислот) и растительное масло (с заметной долей ненасыщенных жирных кислот), легко убедиться, что большое количество двойных связей повышает текучесть.

При низких температурах мембрана становится более жёсткой. Это означает, что все мембранные структуры клетки работают хуже. Чтобы этого не произошло, растения при пониженной температуре усиливают работу десатураз жирных кислот. Не все растения способны достаточно быстро изменить жирнокислотный состав, поэтому тропические растения гибнут даже при низких положительных температурах. Мало кто знает, что рис погибает уже при температуре +7°С.

Учёные работают над тем, чтобы после генно-инженерной модификации у теплолюбивых растений десатуразы жирных кислот работали активнее, что помогает справиться с понижением температуры, близким к нулю.

Если температура опускается ниже 0°С, то возникает другая опасность: образование в клетках кристаллов льда с острыми краями. Кристаллы разрушают мембранные структуры, нарушают целостность клетки, и после оттаивания клетка погибает.

Зимостойкие виды растений накапливают в клетках много защитных веществ, препятствующих образованию кристаллического льда (сахароза, пролин, бетаин-глицин и др.). У теплолюбивых растений накопление этих веществ не столь значительно, поэтому они не выдерживают морозов.

Учёные нашли изящный выход и из этой ситуации. Некоторые организмы (ледяная рыба, зимующие насекомые) легко сохраняют жизнеспособность при цикле замораживания-оттаивания благодаря особым защитным белкам. Если перенести соответствующий ген из ледяной рыбы или из насекомого, клетка растения будет хорошо защищена от кристаллов льда, и морозостойкость повысится.

Кто знает, может быть, не за горами создание зимостойких генетически модифицированных персиков и апельсинов, которые можно будет широко выращивать у нас в стране. Пока что успехи более скромные: пытаются получить сорта томатов и огурцов, которые меньше страдают от заморозков.

Как и зачем производить паутину

Возможно, в будущем генетически-модифицированные растения станут «фабриками» новых материалов. В них можно получать самые разнообразные белки, обладающие уникальными свойствами.

Один из таких белков - спидроин , выделяющийся из паутинных желез у пауков. Раствор белка выдавливается через специальное узкое отверстие. Благодаря вытянутой конформации, молекулы спидроина выстраиваются параллельно, секрет желез быстро сохнет, и образуется очень прочная нить - паутина. Она легко выдерживает вес паука. Нить паутины прочнее стальной проволоки того же диаметра, и при этом эластично растягивается еще на треть своей длины.

На особую прочность паутины человечество давно обратило внимание. Особенно широкое применение нити паутины нашли в тропических странах, где обитают крупные пауки (рис. 14). В Юго-восточной Азии из паутины пряли легендарную прочную ткань - тонг-хай-туан-тсе («сатин Восточного моря»). Видимо, именно из нее была сделана мантия, которую некогда привезли королеве Виктории в подарок китайские послы.

Рис. 14. В тропических странах обитают особо крупные пауки. Изображение: «Потенциал. Химия. Биология. Медицина».

В XVII веке была попытка «одомашнить» европейские виды пауков. Президент Палаты счетов из города Монпелье представил доклад в Парижскую Академию наук, предложив технологию изготовления тканей из паутины. К докладу в качестве демонстрации были приложены особо прочные чулки и перчатки.

Парижская Академия создала комиссию, которая подробно изучила рентабельность производства паутины. Оказалось, что на получение одного фунта паучьего шелка потребуется около 600 пауков. При этом количество мух, которое пошло бы им на корм, превышает полчища мух, которые летают над всей Францией! А чулки и перчатки из паутины решили подарить королю - Людовику XIV. Об оснащении флота парусами из паутины мечтал Наполеон, но его мечте также не суждено было сбыться.

В XXI веке к задаче получения паучьего шелка подходят совершенно по-другому. Уже удалось клонировать ген спидроина из ДНК пауков. Есть проект по пересадке этого гена в растения. Такие генетически-модифицированные растения можно широко выращивать на полях, а из их биомассы выделять и очищать спидроин. Дальше раствор белка нужно под давлением пропустить через тонкие отверстия, и после высыхания получится паутина.

Паутину планируют использовать, прежде всего, в скафандрах космонавтов, а также для изготовления композитных материалов с паутинной основой и пропиткой из синтетических полимеров. Эти композитные материалы по идее разработчиков должны со временем заменить титановые детали в корпусах самолетов. Может быть, и мы когда-нибудь будем носить особо прочную одежду из паутины.

Проект по производству антител в растениях

Белки, вырабатываемые в организме многих животных, которые обеспечивают точное связывание с какими-то чужеродными веществами, попавшими в организм (антигенами ) (рис. 15). Связывание антитела с антигеном настолько специфично, что по этой реакции можно определять ничтожные количества антигенов в среде. В частности, антитела используют для производства разнообразных тест-полосок. Например, на старт наносят специфические антитела кролика, связанные с частицами золота (в водной среде эти частицы золота приобретают синюю окраску). На некотором расстоянии от старта к полимеру, из которого сделана полоска, химически пришивают специфические антитела кролика против того же антигена, а чуть подальше - антитела козы к антителам кролика.

Рис. 15. Схема строения антител. Синим цветом обозначен участок белка, отвечающий за специфическое связывание с антигеном. Фото (увеличить)с сайта lifesciencedigest.com.

Если в среде присутствует искомый антиген, он сначала свяжется с антителами на частицах золота и вместе с ними по капиллярам достигнет неподвижных специфических антител. Здесь антиген опять свяжется с антителами, и движение частиц золота прекратится. Появится первая синяя полоска. Избыток частиц золота с антителами кролика, которые не связались с антигеном, с потоком жидкости достигнет вторых антител (антитела козы против антител кролика). Здесь одни антитела свяжутся с другими антителами, частицы золота остановятся, и проявится вторая полоска.

Если антигена в растворе нет, то частицы золота со специфическими антителами беспрепятственно пройдут мимо первых антител, и «завязнут» только на вторых. Вместо двух синих полосок проявится только одна.

Это - только одна из областей, где применяют антитела. Производить их традиционным способом (через культуру животных клеток) очень дорого. И возникла идея - пересадить гены соответствующих антител из клеток животных в организм растения. Причем от антитела, собственно, нужен только тот участок белка, который связывается с антигеном. Поэтому ген антитела можно даже несколько «укоротить», и получить мини-антитела.

Уже есть успешные попытки пересадить гены антител в ДНК растений. Но тут же возникла трудность. Дело в том, что антитела из животных клеток обычно выделяются наружу. У растений большинство белков, выделяемых наружу, снабжается «хвостом» из нескольких остатков углеводов (гликозилируется). Если антитело гликозилировано, то оно плохо связывает (или даже совсем не связывает) свой антиген. Поэтому ученые собираются вносить «дополнительные коррективы»: выключать гены растений, отвечающие за гликозилирование. После решения этой задачи технология производства антител может кардинально измениться.

Синяя роза и другие

Роза чистого небесно-синего цвета - давняя мечта садоводов. Все попытки селекционеров по выведению синих роз увенчались сортами с сиреневыми или сине-фиолетовыми цветками. Но чистый синий цвет все никак не получался.

За красную, лиловую и синюю окраску цветков отвечает особая группа растительных пигментов - антоцианы . Оказалось, что у роз нет собственного антоциана, окрашенного в синий цвет. Зато такие антоцианы есть, например, среди анютиных глазок (Viola wittrockiana ). Японским исследователям удалось пересадить ген соответствующего антоциана из анютиных глазок в розы. Вскоре на рынке должны появиться букеты из генетически-модифицированных синих роз. Их производство планируют заранее ограничить, чтобы цена на них была постоянно высокой.

Но если синяя роза - это еще только разработка, то желтая петуния уже далеко не редкость (рис. 16). В природной гамме окраски лепестков петунии преобладают розовые, красные и фиолетовые тона. Чтобы сделать лепестки желтыми, в ДНК петунии встроили гены биосинтеза флавоноидов - растворимых в воде пигментов, которые придают желтую окраску. Теперь на основе этих желтых петуний поучены сорта с оранжевой окраской. Их широко применяют в озеленении городов, забыв о том, что такие петунии - типичные ГМО.

Рис. 16. Желтая петуния получена путем генетической модификации с усилением биосинтеза флавоноидов. Изображение: «Потенциал. Химия. Биология. Медицина».

Теперь благодаря генетической инженерии есть принципиально новые возможности получить растения со сколь угодно богатой окраской лепестков. Если раньше селекционер был ограничен тем генетическим разнообразием, которое есть внутри вида, то теперь гены несвойственной для данного вида окраски можно «позаимствовать» у других растений.

Гибриды F1 и мужская стерильность

Если проводить самоопыление одной и той же генетической линии растений в течение многих поколений, то часто они отстают в росте, дают меньший урожай по сравнению с теми, у которых было перекрестное опыление. Это явление было названо инбредной депрессией (). Но если две инбредные линии растений скрестить между собой, то получаются особенно мощные растения, урожай от которых выше, чем у обычных сортов. Потомков первого поколения в генетике принято называть гибридами F1 (рис. 17), а явление усиления роста - гетерозисом .

Рис. 17. Примеры современных особо урожайных гибридов F1. А - цветная капуста сорта «Graffity F1». Б - кабачки «Gold Rush F1». Фото (увеличить) с сайтов www.haydnallbutt.com.au и www.baldur-garten.de.

К сожалению, гетерозис ослабевает, если посеять семена, полученные от гибридов F1, и урожай, соответственно, падает.

Можно предложить и более сложную схему скрещиваний, где исходными будут четыре инбредные линии. Сначала нужно получить два разных гибрида F1, а затем скрестить эти гибриды между собой. У некоторых видов растений таким способом удается усилить эффект гетерозиса, который был у каждого из начальных гибридов F1.

На опытных делянках можно подобрать исходные инбредные линии для получения таких гибридов. Но когда дело доходит до промышленного получения гибридов F1. Представьте что на поле нужно сначала удалить все тычинки у одной из линий, причем часто цветки открываются не одновременно, и нужно успеть до созревания пыльцы! Кроме того, цветки, а тем более - тычинки некоторых растений очень мелкие (цветки моркови, например, не более 2–3 мм в диаметре!).

Именно поэтому один из очень востребованных проектов - получение растений со стерильной пыльцой (т. е. с мужской стерильностью). Такие растения могут давать только семена от перекрестного опыления другими линиями того же вида.

Идея этой программы состоит в следующем. Если бы в тычинках у одной из родительских инбредных линий синтезировалось какое-нибудь ядовитое вещество, которое убивает клетки растений, то тычинки не сформировались бы. Однако у полученных гибридов F1 тычинки должны быть нормальными (иначе урожая вообще не будет). Вторая родительская инбредная линия должна содержать какое-то «противоядие», которое не дает действовать ядовитому веществу.

И «яд», и «противоядие» были найдены у одного из видов бактерий - Bacillus amylolyquefaciens . В ее клетках синтезируется специфическая РНКаза - барназа (<strong>BaRNAse, от B acillus a mylolyquefaciens RNAse ). Барназа разрушает чужеродные РНК и используется бактерией для защиты. Чтобы собственная РНК в клетке не разрушилась, в них синтезируется другой белок - барстар (Barstar ). Этот белок образует с барназой прочный комплекс, и она перестает работать.

Чтобы получить растения с мужской стерильностью, нужно кодирующую часть гена барназы «пришить» к промотору какого-нибудь гена, работающего в тычинках. У трансгенной линии тычинки не разовьются. Для второй линии к такому же промотору нужно «пришить» кодирующую часть гена барстар. Тогда у гибридов F1 между этими двумя линиями в тычинках одновременно образуются и барназа, и барстар. Тычинки могут развиваться нормально, и мы получим хороший урожай.

Эта программа сталкивается с обеспокоенностью людей, что в геноме модифицированных растений в принципе будет содержаться ген биосинтеза какого-то потенциально опасного белка. Поэтому приходится искать другие пути получения мужской стерильности. В частности, было замечено, что у табака жизнеспособная пыльца не образуется, если поврежден один из генов азотного метаболизма, отвечающего за цитоплазматическую форму глутаминсинтетазы. В принципе у растений есть и другая форма этого фермента, которая находится в хлоропластах. Так что без глутамина растение в целом не останется. Однако для развития пыльцы почему-то важна именно цитоплазматическая форма.

Схема получения гибридов F1 теперь несколько изменится. Одна из инбредных линий будет дефектна по гену глутаминсинтетазы, а у второй он будет нормальный. Гибридам F1 достанутся две копии гена глутаминсинтетазы: дефектная и рабочая. В принципе в цитоплазме фермент заработает, и жизнеспособность пыльцы восстановится.

В современном мире каждая семеноводческая фирма старается с производства сортов переходить на производство семян гибридов F1. Дело в том, что сорт можно длительно размножать без потери качества урожая. Фермер только один раз придет на фирму для покупки семян, а дальше в принципе может сам высевать семена собственного сбора * . Если же фирма предлагает более урожайные семена гибридов F1, то закупать их придется ежегодно. Ведь эффект гетерозиса в следующем поколении теряется.

Гибриды F1 позволяют фирмам-производителям семян сохранять свое know-how . Ведь нельзя воспроизвести «фирменный» гибрид F1, если нет родительских инбредных линий. Кроме того, фирмам-конкурентам трудно вовлекать гибриды F1 в свои программы скрещиваний с целью улучшить свои сорта за счет селекционных достижений конкурента. Таким образом, гибриды F1 очень выгодны фирмам-производителям.

Патентование достижений селекции

С производителями семян связана необычная область применение генной инженерии. Чтобы получить новый сорт, селекционеры часто тратят десятки лет. Подобирают родительские пары для скрещивания, если нужно - воздействуют мутагенами, отбирают среди потомков самые перспективные растения, размножают их и тестируют на урожайность, устойчивость к болезням и климатическим факторам в разных условиях. Только после этого сорт можно выпускать для широкого использования.

Рис. 18. Примерно так представляют защиту селекционных достижений современные карикатуристы. Изображение с сайта www.claybennett.com.

У конкурентов есть большой соблазн либо выдать чужое селекционное достижение за свое, либо, воспользовавшись достигнутым чужим результатом, скрестить новый сорт со своими, и получить что-то сходное, как бы «улучшенный вариант» нового сорта. Такая политика конкурентов снижает прибыль от продажи нового сорта.

Во многих странах селекционные достижения патентуют для того, чтобы хоть как-то защититься от подобного рода явлений. Чтобы доказать, что конкуренты использовали чужое селекционное достижение, предлагают путем генетической модификации ввести в ДНК каждого нового сорта определенную последовательность нуклеотидов (что-то вроде штрих-кода). У каждой фирмы, занимающейся селекцией, будет своя, отличающаяся от других, последовательность нуклеотидов. После этого анализируя пробы ДНК легко выявить, использован ли в скрещиваниях чужой генетический материал.

* - В России воспроизведение семенного материала регламентировано законом, защищающим интересы семенных фирм. Собственные семена без лицензии можно собирать не более 4 лет, причем каждый год подавать в налоговую службу об этом декларацию. Однако на практике этот закон в полной мере не работает.

Наклейки (знаки) «Без ГМО» (не содержит ГМО) в наши дни являются спутниками органической продукции: вместе с «экологичностью» дизайна упаковки и грамотной рекламой они как бы гарантируют людям здоровые перспективы. Например, в одних лишь Соединенных Штатах уже восьмой год от производителей поданы для сертификации десятки тысяч названий продуктов.

Компании-производители пожелали официального закрепления того факта, что их еда не является генетически модифицированной. Общественные организации вместе с социальными активистами потребовали обязательную маркировку генно-модифицированной продукции.

В России все, что связано с ГМО, сейчас регулируется законодательством. Так, Госдумой был принят закон, который запрещает выращивание в стране генетически модифицированной продукции. Согласно этому документу запрещено использование для посевов (посадок) семян растений, генетическую программу в которых изменили с применением технологий генной инженерии или в которых содержатся генно-инженерные материалы, внесенные искусственным образом.

Что такое ГМО?

Генетически модифицированными организмами (ГМО) могут быть растения, животные или микроорганизмы, генотипы которых были изменены при помощи технологий генной инженерии. Продовольственной и сельскохозяйственной организацией ООН (FAO) рассматривается применение технологий генной инженерии при создании трансгенных видов растений в качестве неотъемлемой части процесса сельскохозяйственного развития. Процесс прямого переноса генов, которые отличаются полезными признаками, является естественным этапом в селекционных работах с животными или растениями. Такие технологии расширяют множество возможностей при создании новых сортов.

Зачем людям ГМО?

Не в одном только в сельском хозяйстве используются генетически модифицированные организмы. Так, например, современная медицина тоже использует ГМО для своих нужд:

  • Участие в процессе разработки вакцин;
  • ГМ-бактерии оказывают помощь в производстве инсулина;
  • Генотерапия уже излечивает множество болезней, участвует в замедлении процессов старения.

Опасности (минусы) ГМО

Многие ученые утверждают, что использование продуктов с ГМО несет такие основные угрозы:

  • Угрозу для организма людей, связанную с аллергическими заболеваниями, нарушениями обмена веществ, с появлением устойчивости желудочной патогенной микрофлоры человека к антибиотикам, а также с канцерогенными и мутагенными эффектами;
  • Угрозу для окружающей среды, связанную с возникновением вегетирующих сорняков, с которыми не просто справиться, загрязнением исследовательских территорий, химическими загрязнениями, уменьшением генетической плазмы и пр;
  • Глобальные риски, связанные с активизацией критических вирусов, а также с экономической безопасностью.

Так, в Канаде, которая является одной из многих центральных стран-производителей ГМО-продукции, аналогичные случаи уже фиксируются. По сообщениям местной прессы, многие канадские фермы стали жертвами «оккупации» генетически модифицированных «суперсорняков», которые возникли по причине ненамеренного скрещивания трех видов ГМО-семян рапса, устойчивого к самым разнообразным гербицидам. После всего этого экспериментирования вышло растение, какое, по утверждению все той же местной прессы, стало более устойчивым к большинству сельскохозяйственных химикатов.

Подобные проблемы могут возникать и в тех случаях, когда происходит переход генов, отвечающих за устойчивость к гербицидам, от культурного растительного мира к прочим дикорастущим растениям. В частности, было подмечено, что при выращивании трансгенной сои могут произойти генетические мутации в сопутствующих растениях (сорняках). Они, кстати, трансформируются и становятся невосприимчивыми к гербицидам.

Не исключается также и возможная передача генов, с помощью которых происходит кодирование выработки белков. А те в свою очередь становятся токсичными для вредителей-насекомых. Сорные травы, которые занимаются вырабатыванием собственных инсектицидов, приобретают колоссальное преимущество в процессе борьбы с вредителями-насекомыми, которые нередко являются естественным ограничителем их роста.

Как создаются ГМО?

На сегодняшний день используются как минимум три направления генной инженерии, которые располагают чем-то общим с набором текста: копированием/вставкой, цензурой и редактированием.

Так, например, в одних видах берутся необходимые для ученых гены — гены интереса - которые в дальнейшем внедряются в подопытные виды растений.

Так, компанией Syngenta был создан Золотой Рис (R), в составе которого был ген с про-витамином «А» кукурузы. А компанией Monsanto были найдены гены, устойчивые к гербицидам RоundUp в бактериях. Причем открытие произошло на территории их предприятия, которое производило эти гербициды, и внедрило их в растения.

Страны, отрицающие ГМО

Маркировку (знак ГМО) ГМ-растений ввели на территории Австралийского Союза, Китая, Израиля, Бразилии, а также отдельных стран Европейского Союза. Тогда как Канада, Соединенные Штаты, Аргентина, ЮАР маркировку ГМ-продукции оставляют на совести производителей. Зато пальма первенства в биотехнологическом растениеводстве на европейском континенте остается и до настоящего времени за Испанией.

Запреты на производство ГМО на территории России

На территории России в настоящее время производство ГМО под запретом. Тем не менее, ввоз продовольствия с содержанием генно-модифицированных компонентов санкционирован. Главным образом в Россию ввозится модифицированная соя, кукуруза, ГМО-картофель, а также свекла, причем из Соединенных Штатов. США держат пальму первенства в производстве и в потреблении ГМО-продукции. По некоторым данным, приблизительно 80% американских продуктов питания содержат в себе ГМО.

Общенациональная ассоциация генетической безопасности представила любопытную информацию. Оказывается, российский рынок питания включает в себя приблизительно 30–40% продуктов питания с содержанием ГМО. В течение последних трех лет ассоциации удалось обнаружить ГМО в продукции известных компаний, например таких, которые производят готовые завтраки.

На территории нашей страны не так давно смогли подтвердить существенный отрицательный эффект влияния генетически-модифицированных организмов на биологические и физиологические показатели некоторых животных. Так, специалистами уже упомянутой ОАГБ были представлены результаты одного из нескольких независимых исследований по изучению того, как влияет корм с содержанием компонентов ГМО, тот же ГМО-картофель на эти показатели у некоторых животных. По результатам исследований, проведенных ОАГБ вместе с Институтом изучения проблем экологии и эволюции в 2008-2010 годах, стало известно о существенном отрицательном воздействии кормов с содержанием ГМО, что отразилось на репродуктивных функциях и здоровье подопытных млекопитающих. Имеются версии, что продолжительное употребление трансгенной сои приводит к нарушению здоровья людей и животных.

Животные, принимающие ГМО-корма, демонстрировали явную отсталость в своем развитии и росте. У них были обнаружены нарушения в соотношениях полов в их выводках. Причем произошло увеличение количества особей женского пола. Более того, уменьшилась общая численность потомства, а в дальнейшем произошло полное вымирание уже во втором поколении. Ко всему прочему также существенно уменьшились репродуктивные способности у особей мужского пола.

По мнению и высказываниям специалистов, существуют риски, что от данных продуктов могут возникнуть нарушения целых пищевых цепочек. В результате в отдельных экологических системах могут даже исчезнуть некоторые виды.

В каких продуктах может быть состав ГМО?

На рынке генетически модифицированных продуктов можно найти:

  • Сою в ее разных формах (типа бобов, проростков, концентратов, муки, молока и пр.);
  • Кукурузу маис, которая может быть в разных формах (типа муки, крупы, попкорна, масла, чипсов, крахмала, сиропов и пр.);
  • ГМО-картофель в его разных формах (типа полуфабрикатов, сухого пюре, чипсов, крекеров, муки и пр.);
  • Помидоры в их разных формах (типа пасты, пюре, соусов, кетчупов, помидоров с чужим геном и пр.);
  • Кабачки, а также продукты, изготовленные с их применением;
  • Сахарную свеклу, свеклу столовую, сахара, произведенные из сахарной свеклы;
  • Пшеницу, а также продукты, изготовленные с ее применением, включая хлеб с хлебобулочными изделиями;
  • Масло подсолнечное;
  • Рис, продукты его содержащие (типа муки, гранул, хлопьев, чипсов);
  • Морковь и продукты с ее содержанием;
  • Разновидности лука репчатого, шалота, порея и прочих луковичных овощей.

Соответственно существует большая вероятность встретить ГМО в продуктах, которые производят с применением этих растений. В основном генной модификации подвергают сою, рапс, кукурузу, подсолнух, ГМО-картофель, клубнику, томаты, кабачки, паприку, а также салат. Даже детское питание содержит ГМО-продукцию. И все это можно купить в обычном супермаркете.

Сенсационные пророчества Жюля Верна

В 1994 году правнуку известного писателя-фантаста в процессе работы с семейным архивом посчастливилось обнаружить один из ранее неизданных романов Жюля Верна. Это был роман под названием «Париж в XX веке». Действие происходило в Париже XX столетия, в котором была световая реклама, телевизоры, автомобили с двигателями внутреннего сгорания.

Что самое интересное, в этом произведении было предсказание одного открытия. Это были так называемые «живые атомы», отвечающие за наследственность в растениях и живых организмах. Более того писателю-фантасту удалось как-то узнать о скрещивании генов. Он предсказал, что будут создаваться растения (по примеру помидоров), у которых разовьется способность в любых погодных условиях, даже в морозах, приносить не один урожай в году. В соответствии с идеей Жюля Верна, с помощью таких искусственно созданных растений человечеству удастся победить голод, и будет достигнуто всеобщее изобилие.

Однако не все так радужно было в этих пророчествах. Немногим позднее, спустя десятилетия, человечество обнаружит, что такие продукты окажутся чрезвычайно опасными для здоровья людей. Более того, употребление в пищу таких продуктов станет причиной одного страшного заболевания – «скоропостижной старости».

И как часто это бывает «чисто случайно», когда обнаруженному роману предстояло выйти в свет, (он уже был практически готов к печати), в торговой сети появились первые трансгенные продукты, и это были помидоры. В то время ученые впервые внесли изменения в генетическую структуру растений. Издание фантастического романа могло во многом сказаться на репутации продуктов, содержащих ГМО, поэтому его издали «слегка» сокращенным. Естественно, что информацию о влиянии ГМО на живой организм, на человека и вреде употребления продуктов ГМО засекретили. Сегодня становится ясно, что такое пророчество входит в жизнь людей. Осталась самая малость: подождать еще несколько десятилетий, чтобы убедиться в его правдивости.

Вместо заключения

В свете вышеизложенного можно сделать краткие выводы. ГМО-продукты могут быть выгодными только производителям, которые зарабатывают сверхприбыли. Явную пользу для людей ГМО-продукция, кроме экономической составляющей для их изготовителей, не несет. Впрочем, как и на сто процентов доказать вред пока невозможно, по крайней мере при настоящем мироустройстве. Такая вот история и проблема ГМО. Каждому человеку придется самому решать, какой он будет питаться пищей, и будет ли он и вся его семья употреблять эту отраву.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Страница 9 из 11

ГМ – растения в России

На российском рынке ГМ-продукция появилась в 90-е годы. В настоящее время в России разрешенными являются 17 линий ГМ-культур (7 линий кукурузы, 3 линии сои, 3 линии картофеля, 2 линии риса, 2 линии свеклы) и 5 видов микроорганизмов. Наиболее распространенной добавкой является ГМ-соя, устойчивая к гербициду раундапу (линия 40.3.2). Вроде бы разрешенных сортов немного, но добавляются они во многие продукты. ГМ-компоненты встречаются в хлебо-булочных изделиях, в мясных и в молочных продуктах. Много их и в детском питании, особенно для самых маленьких.

Комиссия Государственной экологической экспертизы по оценке безопасности ГМ-культур, работающая в рамках закона РФ "Об экологической экспертизе", не признала ни одну из представленных для утверждения линий безопасной. (Членами этой комиссии являются представители трех основных российских академий: РАН, РАМН и РАСХН). Благодаря этому в России выращивание ГМ-культур официально запрещено, а вот импорт ГМ-продуктов разрешен, что вполне соответствует чаяниям компаний-монополистов на рынке ГМ-продуктов.

Сейчас в стране много продуктов, которые содержат ГМ-компоненты, но все они поступают к потребителю без соответствующих маркировок, несмотря на подписанное В.В.Путиным в конце 2005г. "Дополнение к закону о защите прав потребителей об обязательной маркировке ГМ-компонентов". Проведенная Институтом питания РАМН проверка не соответствовала "Методическим Указаниям по проверке ГМО", подписанным Г.Г.Онищенко, а в некоторых случаях полученные данные полностью противоречили заявленным выводам. Так, при экспериментальной проверке Институтом питания сортов американского ГМ-картофеля "Рассет Бурбанк" на крысах у животных наблюдались серьезные морфологические изменения в печени, почках, толстой кишке; понижение гемоглобина; усиление диуреза; изменение массы сердца и предстательной железы. Однако Институт питания сделал вывод, что "изученный сорт картофеля может быть использован в питании человека при проведении дальнейших эпидемиологических исследований", т.е. при изучении клинической картины заболевания и его распространения среди населения (Медико-биологические исследования трансгенного картофеля, устойчивого к колорадскому жуку. Отчет Института питания РАМН. М: Институт питания РАМН. 1998, 63с.).

В нашей стране по непонятным причинам практически не проводятся научные и клинические исследования и испытания влияния ГМО на животных и человека. Попытки провести такие исследования наталкиваются на огромное сопротивление. А ведь влияние ГМ-продуктов на человека все еще совершенно не изучено, последствия их широкого распространения непредсказуемы.

Проведенное нами исследование влияния ГМ-сои, устойчивой к гербициду раундапу (RR, линия 40.3.2), на потомство лабораторных крыс показала повышенную смертность крысят первого поколения, недоразвитость части выживших крысят, патологические изменения в органах и отсутствие второго поколения (Ермакова, 2006; Ermakova, 2006, 2007; Ермакова & Барсков, 2008). При этом мы подкармливали ГМ-соей только самок за две недели до спаривания, во время спаривания и лактации. Сою добавляли в виде соевой муки (три повторные серии), соевых семян или соевого шрота. Более 30% крысят из группы ГМ-соя были недоразвитыми, имели значительно меньшие размеры и массу тела, чем обычные крысята на этом сроке развития. В контрольных группах таких крысят было в несколько раз меньше. В других сериях ГМ-сою добавляли к корму не только самок, но и самцов. При этом не смогли получить нормальное первое поколение: 70% крыс потомство не дали (Малыгин, Ермакова, 2008). В другой работе не удалось получить потомство у мышей в соевых группах (Малыгин, 2008). Снижение рождаемости и уменьшение концентрации тестостерона у самцов наблюдалось у хомячков Кэмпбелла при добавлении в их корм семян той же линии ГМ-сои (Назарова, Ермакова, 2009).

На огромные риски для здоровья человека, обусловленные потреблением "трансгенных" продуктов, указывалось в работах российских ученых (О.А.Монастырский, В.В.Кузнецов, А.М.Куликов, А.В.Яблоков, А.С.Баранов и многие другие). В научной литературе появились статьи о взаимосвязи ГМО с онкологией. По мнению учёных, внимание надо обратить не только на особенности трансгенов. которые внедряются, и безопасность белков, которые образуются, но и на технологии встраивания генов, которые еще очень несовершенны и не гарантируют безопасность организмов, созданных с их помощью.

По данным О. А.Монастырского и М.П.Селезневой (2006), за 3 года импорт в нашу страну увеличился в 100 раз: более 50% пищевой продукции и 80% кормов содержат зерно или продуктов их переработки (ГМ сои, рапса, кукурузы), а также некоторые виды плодов и овощей. В настоящее время генетически модифицированные источники по оценке экспертов могут содержать 80% овощных консервов, 70% мясных продуктов, 70% кондитерских изделий, 50% - фруктов и овощей, 15-20% молочных продуктов и 90% - пищевых смесей для детей. Возможно, что резкое увеличение по данным "Медицинского информационного агентства" в России числа онкологических заболеваний, особенно кишечного тракта и предстательной железы, всплеска лейкемии у детей, связано с использованием именно генетически-модифицированных компонентов в продуктах питания.

По мнению российских генетиков "…поедание организмов друг другом может лежать в основе горизонтального переноса, поскольку показано, что ДНК переваривается не до конца и отдельные молекулы могут попадать из кишечника в клетку и в ядро, а затем интегрироваться в хромосому" (Гвоздев, 2004). Что же касается колечек плазмид (кольцевая ДНК), которые используются как вектор для внедрения генов, то кольцевая форма ДНК делает их более устойчивыми к разрушению.

Российские ученые В.В.Кузнецов и А.М.Куликов, (2005) считают, что "снижение или исключение рисков при выращивании трансгенных растений предполагает значительное совершенствование технологии получения ГМО, создание трансгенных растений нового поколения, всестороннее изучение биологии ГМ растений и фундаментальных основ регуляции экспрессии генома". Все это означает, что существует настоятельная необходимость в проведении в России тщательных и независимых научных исследований влияния ГМО на живые организмы и их потомство, а также в разработке безопасных для живых организмов и окружающей среды биотехнологических методов.

Проверка генетически модифицированных организмов в России осуществляется Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор), которая была образована в соответствии с Указом Президента Российской Федерации от 9 марта 2004 г. № 314. В разных городах России были созданы лаборатории с использованием полимеразной цепной реакции (ПЦР) для выявления ГМ-компонентов в продуктах питания.

Действующая в России система оценки безопасности ГМО требует проведения более широкого спектра исследований, чем в других странах (США, Евросоюз) и включает в себя длительные токсикологические исследования на животных – 180 дней (Евросоюз – 90 дней), а также применение современных методов анализа, таких как, определение генотоксичности, геномный и протеомный анализы, оценка аллергенности на модельных системах и многое другое, что является дополнительным фактором, гарантирующим безопасность регистрируемых пищевых продуктов, полученных из ГМО. Эти многоплановые исследования осуществляются в целом ряде ведущих научно-исследовательских учреждений системы Роспотребнадзора, РАМН, РАН, РАСХН и Минобрнауки России.

В соответствии с законодательством Российской Федерации (Федеральные законы от 05.07.1996 № 86-ФЗ "О государственном регулировании в области генно-инженерной деятельности", от 02.01.2000 № 29-ФЗ "О качестве и безопасности пищевых продуктов" и от 30.03.1999 № 52-ФЗ "О санитарно-эпидемиологическом благополучии населения") пищевая продукция из ГМО относится к категории "новой пищи" и подлежит обязательной оценке на безопасность и последующему мониторингу за оборотом.

Согласно письму Роспотребнадзора от 24.01.2006 № 0100/446-06-32 содержание в пищевых продуктах 0,9 % и менее компонентов, полученных с применением ГМО, является случайной или технически неустранимой примесью и пищевые продукты, содержащие указанное количество компонентов ГМО, не относятся к категории пищевых продуктов, содержащих компоненты, полученные с применением ГМО, и не подлежат этикетированию. Однако отсутствие хорошо подготовленной лабораторной базы на местах делает это постановление ещё одной лазейкой для предпринимателей, позволяющей не ставить маркировку на продуктах.