Что такое прилив и отлив на море. Прилив и местные условия


На высоту прилива оказывают большое влияние местные географические условия, особенно очертания берегов и рельеф дна.

Когда приливная волна попадает в постепенно сужающийся залив, ее высота соответственно увеличивается. Если же приливная волна проходит сначала через узкий и мелкий пролив, где она в значительной мере теряет свою энергию, а затем разливается по широкому пространству, высота волны резко снижается.

Прежде чем атлантическая приливная волна доберется до Черного моря, она пройдет через Гибралтарский пролив, а затем через проливы Дарданеллы и Босфор. Понятно, что при этом приливная волна резко ослабеет. Поэтому в Черном море приливы почти незаметны. В Азовском море приливы совсем не наблюдаются.

Чтобы попасть в Балтийское море, приливной волне нужно пройти через очень мелкие и узкие проливы Зунд, Большой и Малый Бельт. Поэтому на Балтийском море и в частности в Финском заливе приливы мало заметны. Колебания уровня моря зависят здесь главным образом от сгона и нагона воды ветром.

Из Баренцева моря приливная волна входит в Белое море широким фронтом и, постепенно сужаясь, растет в высоту. Поэтому по берегам Мезенского залива приливы достигают 6-8 и даже 10 м.

НЕПРАВИЛЬНЫЕ И СМЕШАННЫЕ ПРИЛИВЫ

Кроме правильных полусуточных приливов, при которых за 24 часа 50 минут бывает две полные и две малые воды, в некоторых местах наблюдаются неправильные приливы с одной малой водой в течение суток. Такие приливы называются суточными.

В других местах наблюдаются смешанные приливы, когда в течение суток бывает то одна полная вода, то две.

Неправильные и смешанные приливы возникают в результате сложного взаимодействия между лунной и солнечной приливными волнами и географической обстановкой (т. е. очертаниями берега, рельефом дна моря и пр.).

Обегая вращающийся земной шар, приливная волна испытывает трение о дно и берега и несколько запаздывает по отношению к кульминации Луны. Это опоздание и определяет прикладной час, о котором сказано раньше.

САМЫЕ ВЫСОКИЕ ПРИЛИВЫ

В открытом океане у обособленных островов высота самых больших приливов обычно не велика: 1-2 м, а иногда и меньше, в зависимости от рельефа дна и характера береговой линии.

Около материковых берегов и особенно в некоторых заливах приливы могут быть очень значительными. На атлантическом берегу Северной Америки, к югу от залива Св. Лаврентия, в который впадает р. Св. Лаврентия, находится принадлежащий Канаде п-ов Новая Шотландия. Между ним и материком расположен длинный постепенно сужающийся залив Фанди. Форма залива заставляет входящую в него приливную волну быстро повышаться. У вершины залива высота прилива может достигать 18 м. Эта рекордная приливная волна могла бы затопить пятиэтажный дом! Приливы в заливе Фанди правильные, т. е. в течение 24 часов 50 минут бывает две полные и две малые воды. Следовательно, два раза в сутки происходят резкие поднятия и опускания уровня моря. Вода то бурно устремляется в залив, то уходит из него.

Поэтому залив Фанди непрерывно промывается. На его дне ничто не может удержаться. Все выносится в открытый океан.

Очень высокие приливы - до 15 м - наблюдаются в одном из заливов на юге Баффиновой Земли. Этот залив, так же как и Фанди, постепенно сужается к вершине.

Очень высокие правильные приливы бывают в заливе Сен-Мало во Франции - до 15 м. У города Гранвиль, расположенного на берегу этого залива, во время отлива море отходит на расстояние более километра. Жители города собирают рыбу в понижениях обнажившегося морского дна.

В южной части Атлантического океана высокие приливы - до 12-14 м - можно наблюдать у берегов Патагонии к северу от входа в Магелланов пролив.

В Тихом океане наибольшие приливы оказываются в Охотском море у советских берегов. Там, между материком и перешейком п-ва Камчатки, находится Пенжинская губа, похожая по своим очертаниям на залив Фанди. Приливы здесь неправильные, смешанные.

Максимальная высота пенжинских приливов доходит до 13 м. Это самые высокие приливы у берегов Советского Союза. Кроме пенжинских, в Тихом океане значительные приливы наблюдаются только у берегов Аляски в заливе Кука, где они достигают 12 м.

В Индийском океане высокие приливы встречаются у западных берегов Индии (неправильные, до 12 м) и к западу от порта Дарвин на северном берегу Австралии (до 11 м).

Приливы Северного Ледовитого океана лучше всего изучены у советских берегов. За очень редкими исключениями, все они правильные, полусуточные.

У берегов морей Карского, Лаптевых, Восточно-Сибирского и Чукотского высоких приливов не бывает. Обычно они не превышают 1 м. Только в бухте Нордвик (море Лаптевых) приливы доходят до 3 м. Такой же высоты приливы наблюдаются у берегов Земли Франца-Иосифа и у западных берегов Новой Земли.

ПРИЛИВЫ В ПРОЛИВАХ И УСТЬЯХ РЕК

В проливах между островами, когда приливная волна подходит к противоположным концам проливов не одновременно, возникают бурные водовороты, представляющие опасность для мелких рыбачьих судов. Такой водоворот в проливах между Лофотенскими островами у северо-западных берегов Норвегии местные рыбаки называют Мальстремом, т. е. «дурным течением». Мальстрем ярко описан Жюль Верном в его романе «80 тысяч километров под водой».

Когда высокая приливная волна входит в реку навстречу течению, вверх по реке бежит пенящийся вал. Это явление называется бором, или маскаре.

Бор сильно разрушает берега. При отливе размытый грунт уносится в море. Поэтому устьевые участки даже небольших рек, куда проникают приливы, обычно расширены и углублены. Такие широкие и глубокие устья рек называют эстуариями. В них свободно входят крупные морские суда. Эстуарии имеют pp. Мезень, Темза, Сена, Гаронна, Св. Лаврентия, Амазонка и др.

ПРИЛИВЫ И СУДОХОДСТВО. «СИНИЙ УГОЛЬ»

Приливы и отливы имеют большое значение для судоходства. Во многие гавани океанские суда входят только во время приливов. Приливо-отливные течения иногда сносят морские суда с принятого курса.

Приливо-отливную энергию называют синим углем. У советских берегов запасы синего угля довольно значительны.

Наступит время, когда люди научатся широко использовать и этот источник энергии.

От чего возникают приливы?

Жители большинства городов и деревень, расположенных на берегах морей и океанов, дважды за сутки могут наблюдать одно из самых интересных явлений природы - регулярные изменения уровня воды, которые называются приливами и отливами. Подобные явления возникают из-за наличия силы притяжения между Землей, Луной и Солнцем, а так же благодаря центробежной силе, возникающей вследствие вращения Земли, а значит, и Луны, вокруг Солнца по определенной траектории. Речь в этой статье пойдёт о самых высоких приливах.

Приливы и отливы возникают дважды в сутки. Каждое такое явление длится, в среднем, около 6 часов 10 минут. Достигнув максимальной своей точки (так называемая, полная вода), уровень океана начинает постепенно снижаться, что так же занимает около 6 часов, пока не достигнет своего минимума (малая вода). Лучше всего приливы и отливы заметны при наблюдении за открытым морем, океаном или на морском побережье.

Рекордсмен по приливам - залив Фанди


В зависимости от места на планете, приливы могут возникать с разной частотой. К примеру, на побережье Центральной Америки, на островных дугах, в Восточной Азии приливы и отливы случаются всего по одному разу за сутки. А вот высота приливов гораздо более разнообразна, чем их частота, и зависит она от множества различных факторов. В открытом океане и близ островов высота приливов относительно невелика: на Гавайских островах приблизительно 1,1 метра, на островах Фиджи - 1,8 метра, около острова святой Елены – 1,1 метра. Во внутренних же морях разность уровня воды между приливом и отливом совсем невелика. В Чёрном море она составляет всего 14 см.

А вот рекордсменом по высоте приливов является залив Фанди, омывающий побережье Канады и США. Залив этот имеет достаточно крупные размеры: длина - 300 км, глубина до 215 метров, а самая широкая его часть достигает 90 км в ширину. Самый высокий прилив, зарегистрированный в заливе Фанди, достиг 18 метров, что и сейчас является мировым рекордом.

Порт Сент-Джон


Порт Сент-Джон, расположенный в заливе Фанди (бывший Французский залив), является уникальным сооружением. Многих трудов морякам стоило приспособиться к особенностям местной природы, совладать с морем. Корабли в порт могут заходить только в соответствии со строгим графиком, в определенное время суток.

Самый высокий прилив у берегов России был зарегистрирован в северной части Охотского моря, в Пенжинской губе. Высота его составляла 14 м. Такие высокие цифры были достигнуты лишь единожды, в начале прошлого века.

Прилив и отлив

Прили́в и отли́в - периодические вертикальные колебания уровня океана или моря , являющиеся результатом изменения положений Луны и Солнца относительно Земли вкупе с эффектами вращения Земли и особенностями данного рельефа и проявляющееся в периодическом горизонтальном смещении водных масс. Приливы и отливы вызывают изменения в высоте уровня моря, а также периодические течения, известные как прили́вные течения, делающие предсказание приливов важным для прибрежной навигации .

Интенсивность этих явлений зависит от многих факторов, однако наиболее важным из них является степень связи водоёмов с мировым океаном . Чем более замкнут водоём, тем меньше степень проявления приливо-отливных явлений.

Ежегодно повторяющийся приливо-отливной цикл остаётся неизменным вследствие точной компенсации сил притяжения между Солнцем и центром масс планетной пары и силами инерции, приложенными к этому центру.

Поскольку положение Луны и Солнца по отношению к Земле периодически меняется, меняется и интенсивность результирующих приливо-отливных явлений.

Отлив у Сен-Мало

История

Отливы играли заметную роль в снабжении прибрежного населения морепродуктами, позволяя собирать на обнажившемся морском дне годную для еды пищу.

Терминология


Малая вода (Бретань, Франция)

Максимальный уровень поверхности воды во время прилива называется полной водой , а минимальный во время отлива - малой водой . В океане, где дно ровное, а суша далеко, полная вода проявляется как два «вздутия» водной поверхности: одно из них находится со стороны Луны, а другое - в противоположном конце земного шара. Также могут присутствовать ещё два меньших по размеру вздутия со стороны, направленной к Солнцу, и противоположной ему. Объяснение этому эффекту можно найти ниже, в разделе физика прилива .

Так как Луна и Солнце перемещаются относительно Земли, вместе с ними перемещаются и водные горбы, образуя прили́вные волны и прили́вные течения . В открытом море приливные течения имеют вращательный характер, а вблизи берегов и в узких заливах и проливах - возвратно-поступательный.

Если бы вся Земля была покрыта водой, мы бы наблюдали два регулярных прилива и отлива ежедневно. Но так как беспрепятственному распространению приливных волн мешают участки суши: острова и континенты , а также из-за действия силы Кориолиса на движущуюся воду, вместо двух приливных волн наблюдается множество маленьких волн, которые медленно (в большинстве случаев с периодом 12 ч 25,2 мин) обегают вокруг точки, называющейся амфидромической , в которой амплитуда прилива равна нулю. Доминирующая компонента прилива (лунный прилив М2) образует на поверхности Мирового океана около десятка амфидромических точек с движением волны по часовой стрелке и примерно столько же - против часовой (см. карту). Всё это делает невозможным предсказание времени прилива только на основе положений Луны и Солнца относительно Земли. Вместо этого используют «ежегодник приливов» - справочное пособие для вычисления времени наступления приливов и их высоты в различных пунктах земного шара. Также используются таблицы приливов, с данными о моментах и высотах малых и полных вод, вычисленными на год вперёд для основных прили́вных по́ртов .


Составляющая прилива M2

Если соединить на карте точки с одинаковыми фазами прилива, мы получим так называемые котидальные линии , радиально расходящиеся из амфидромической точки. Обычно котидальные линии характеризуют положение гребня приливной волны для каждого часа. Фактически котидальные линии отражают скорость распространения приливной волны за 1 час. Карты, на которых представлены линии равных амплитуд и фаз приливных волн, называются котидальными картами .

Высота прилива - разница между высшим уровнем воды при приливе (полная вода) и низшим её уровнем при отливе (малая вода). Высота прилива - величина непостоянная, однако средний её показатель приводится при характеристике каждого участка побережья.

В зависимости от взаимного расположения Луны и Солнца малая и большая приливные волны могут усиливать друг друга. Для таких приливов исторически сложились специальные названия:

  • Квадратурный прилив - наименьший прилив, когда приливообразующие силы Луны и Солнца действуют под прямым углом друг к другу (такое положение светил называется квадратурой).
  • Сизигийный прилив - наибольший прилив, когда приливообразующие силы Луны и Солнца действуют вдоль одного направления (такое положение светил называется сизигией).

Чем меньше или больше прилив, тем меньше или, соответственно, больше отлив.

Самые высокие приливы в мире

Можно наблюдать в бухте Фанди (15,6-18 м), которая находится на восточном побережье Канады между Нью-Брансуиком и Новой Шотландией.

На Европейском континенте самые высокие приливы (до 13,5 м) наблюдаются в Бретани у города Сен-Мало . Здесь приливная волна фокусируется береговой чертой полуостровов Корнуолл (Англия) и Котантен (Франция).

Физика прилива

Современная формулировка

Применительно к планете Земля причиной приливов является нахождение планеты в гравитационном поле, создаваемом Солнцем и Луной. Поскольку создаваемые ими эффекты независимы, то воздействие этих небесных тел на Землю можно рассматривать по отдельности. В таком случае для каждой пары тел можно считать, что каждое из них обращается вокруг общего центра гравитации. Для пары Земля - Солнце этот центр находится в глубине Солнца на расстоянии 451 км от его центра. Для пары Земля-Луна он находится в глубине Земли на расстоянии 2/3 её радиуса.

Каждое из этих тел испытывает действие приливных сил, источником которых являются сила гравитации и внутренние силы, обеспечивающие целостность небесного тела, в роли которых выступает сила собственного притяжения, далее называемая самогравитацией. Наиболее наглядно возникновение приливных сил прослеживается на примере системы Земля - Солнце.

Приливная сила представляет собой результат конкурирующего взаимодействия силы тяготения, направленной к центру гравитации и убывающей обратно пропорционально квадрату расстояния от него, и фиктивной центробежной силы инерции, обусловленной обращением небесного тела вокруг этого центра. Эти силы, будучи противоположными по направлению, совпадают по величине только в центре масс каждого из небесных тел. Благодаря действию внутренних сил Земля обращается вокруг центра Солнца как целое с постоянной угловой скоростью для каждого элемента составляющей её массы. Поэтому по мере удаления этого элемента массы от центра гравитации действующая на него центробежная сила растёт пропорционально квадрату расстояния. Более детальное распределение приливных сил в их проекции на плоскость, перпендикулярную плоскости эклиптики , приведены на рис.1.


Рис.1 Схема распределения приливных сил в проекции на плоскость, перпендикулярную Эклиптике. Тяготеющее тело либо справа, либо слева.

Достигаемое в результате действия приливных сил воспроизводство изменений формы подвергаемого их действию тел может, в соответствие с ньютонианской парадигмой, быть достигнуто лишь в том случае, если эти силы полностью скомпенсированы иными силами, в число которых может входить и сила Всемирного тяготения.

Рис.2 Деформация водной оболочки Земли как следствие баланса приливной силы, силы самогравитации и силы реакции воды на усилие сжатия

В результате сложения этих сил и возникают симметрично по обе стороны земного шара приливные силы, направленные в разные стороны от него. Приливная сила, направленная к Солнцу, имеет гравитационную природу, а направленная от Солнца есть следствие фиктивной силы инерции.

Эти силы крайне слабы и не идут ни в какое сравнение с силами самогравитации (создаваемое ими ускорение в 10 миллионов раз меньше ускорения свободного падения ). Однако они вызывают сдвиг частиц воды Мирового океана (сопротивление сдвигу в воде при малых скоростях движения практически равно нулю, в то время как сжатию - чрезвычайно велико), до тех пор, пока касательная к поверхности воды не станет перпендикулярной результирующей силе.

В итоге на поверхности мирового океана возникает волна, занимающая постоянное положение в системах взаимно тяготеющих тел, но бегущая по поверхности океана совместно с суточным движением его дна и берегов. Таким образом (в пренебрежении океаническими течениями) каждая частица воды дважды совершает в течение суток колебательное движение вверх-вниз.

Горизонтальное движение воды наблюдается лишь у берегов как следствие подъёма её уровня. Скорость движения тем больше, чем более полого расположено морское дно.

Приливообразующий потенциал

(концепция акад. Шулейкина )

Пренебрегая размером, строением и формой Луны, запишем удельную силу притяжения пробного тела, находящегося на Земле. Пусть - радиус-вектор, направленный от пробного тела в сторону Луны, - длина этого вектора. В этом случае сила притяжения этого тела Луной будет равна

где - селенометрическая гравитационная постоянная. Пробное тело поместим в точку . Сила притяжения пробного тела, помещённого в центр масс Земли будет равна

Здесь под и понимаются радиус-вектор, соединяющий центры масс Земли и Луны, и их абсолютные величины. Приливной силой мы будем называть разность этих двух сил тяготения

В формулах (1) и (2) Луна считается шаром со сферически-симметричным распределением масс. Силовая функция притяжения пробного тела Луной ничем не отличается от силовой функции притяжения шара и равна Вторая сила приложена к центру масс Земли и является строго постоянной величиной. Для получения силовой функции для этой силы мы введём временную систему координат. Ось проведём из центра Земли и направим в сторону Луны. Направления двух других осей оставим произвольными. Тогда силовая функция силы будет равна . Приливообразующий потенциал будет равен разности этих двух силовых функций. Обозначим его , получим Постоянную определим из условия нормировки, согласно которому приливообразующий потенциал в центре Земли равен нулю. В центре Земли , Отсюда следует, что . Следовательно, мы получаем окончательную формулу приливообразующего потенциала в виде (4)

Поскольку

При малых величинах , , последнее выражение можно представить в следующем виде

Подставив (5) в (4), получим

Деформация поверхности планеты под действием приливов и отливов

Возмущающее воздействие приливного потенциала деформирует уровненную поверхность планеты. Оценим это воздействие, считая, что Земля представляет собой шар со сферически-симметричным распределением массы. Невозмущённый гравитационный потенциал Земли на поверхности будет равен . Для точки . , находящейся на расстоянии от центра сферы, гравитационный потенциал Земли равен . Сократив на гравитационную постоянную, получим . Здесь переменными величинами являются и . Обозначим отношение масс гравитирующего тела к массе планеты греческой буквой и решим полученное выражение относительно :

Так как с той же степенью точности получим

Учитывая малость отношения последние выражения можно записать так

Мы получили, таким образом, уравнение двухосного эллипсоида, у которого ось вращения совпадает с осью , т.е с прямой, соединяющей тяготеющее тело с центром Земли. Полуоси этого эллипсоида, очевидно, равны

Приведём в конце небольшую численную иллюстрацию данного эффекта. Вычислим приливной «горб» на Земле, вызванный притяжением Луны. Радиус Земли равен км, расстояние между центрами Земли и Луны с учётом нестабильности лунной орбиты км, отношение массы Земли к массе Луны равно 81:1. Очевидно, что при подстановке в формулу мы получим величину, примерно равную 36 см.

См. также

Примечания

Литература

  • Фриш С. А. и Тиморева А. В. Курс общей физики, Учебник для физико-математических и физико-технических факультетов государственных университетов,Том I. М.: ГИТТЛ,1957
  • Щулейкин В. В. Физика моря. М.:Изд-во «Наука»,Отделение наук о Земле АН СССР 1967
  • Войт С. С. Что такое приливы. Редколлегия научно-популярной литературы Ан СССР

Ссылки

  • WXTide32 - свободно распространяемая программа для составления таблиц приливов
прили́вы и отли́вы
периодические колебания уровня Мирового океана, атмосферного давления и деформации твёрдого тела Земли, обусловленные силами притяжения Луны и Солнца. Под воздействием этих небесных тел возникают приливообразующие силы, которые пропорциональны массе этого тела, его расстоянию от центра Земли и обратно пропорциональны кубу расстояния от Земли. Из-за большего расстояния (несмотря на значительно большую массу) приливообразующая сила Солнца в ср. в 2,16 раза меньше, чем Луны. Приливообразующая сила непрерывно меняется в каждой точке Земли вследствие её суточного вращения и движения планет по своим орбитам.
Наибольшее поднятие воды называют полная вода , минимальное – малая вода . Выделяют 3 осн. типа приливов: полусуточные , когда в течение т. н. лунных суток (24 ч 54 мин.) наблюдаются 2 полных и 2 малых воды; суточные , когда за тот же период проходит 1 полная и 1 малая вода; смешанные – промежуточные между двумя предыдущими. Макс. выс. достигают сизигийные приливы , когда Солнце, Луна и Земля находятся на одной линии (или в одной фазе). Минимальны квадратурные приливы , когда Солнце и Луна занимают взаимно перпендикулярное положение и оказываемые ими влияния оказываются в противодействии.
Приливная волна обходит Землю по экватору за 36 ч, двигаясь по океанам с В. на З. со скоростью 1100 км/ч. Из-за того, что океан покрывает не всю Землю, приливная волна встречает преграды в виде материков, испытывает трение о дно. Это порождает обратные течения и другие явления, вследствие которых амплитуды и фазы приливных волн сильно отличаются от расчётных теоретических. На удалении от материков величина приливов составляет ок. 1 м, у берегов разность уровней между полной и малой водой может быть намного больше. Особенно велики колебания в постепенно сужающихся проливах и заливах-эстуариях. Мировой рекорд (18 м, по другим данным – 19,6 м) зафиксирован на Атлантическом побережье Канады, в заливе Фанди. В России макс. приливы (до 13 м) наблюдаются в Пенжинской губе Охотского моря. Прилив, распространяясь в устье реки, может трансформироваться в ней в крутую волну, идущую вверх по течению. Такое явление в Юго-Вост. Азии называется «бор», в устье Амазонки – «поророка».
При прохождении упругих приливных волн вертикальные смещения земной коры могут достигать 50 см, а горизонтальные – 5 см. Они проявляются в периодических изменениях уровня воды в колодцах, уровня лавы в вулканах, в дебете воды некоторых источников. Атм. приливы сравнительно слабые, наиболее заметны в тропической зоне и уменьшаются по мере приближения к полюсам. Они играют значительную роль в динамике верхних слоёв атмосферы. Приливы, проявляющиеся во всех оболочках Земли, замедляют её вращение вокруг собственной оси, но гл. роль в этом принадлежит океаническим приливам.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн. Под редакцией проф. А. П. Горкина. 2006.

Приливы приливы и отливы
периодические колебания уровня воды (подъемы и спады) в акваториях на Земле, которые обусловлены гравитационным притяжением Луны и Солнца, действующим на вращающуюся Землю. Все крупные акватории, включая океаны, моря и озера, в той или иной степени подвержены приливам и отливам, хотя на озерах они невелики.
Самый высокий уровень воды, наблюдаемый за сутки или половину суток во время прилива, называется полной водой, самый низкий уровень во время отлива – малой водой, а момент достижения этих предельных отметок уровня – стоянием (или стадией) соответственно прилива или отлива. Средний уровень моря – условная величина, выше которой расположены отметки уровня во время приливов, а ниже – во время отливов. Это результат осреднения больших рядов срочных наблюдений. Средняя высота прилива (или отлива) – осредненная величина, рассчитанная по большой серии данных об уровнях полных или малых вод. Оба этих средних уровня привязаны к местному футштоку.
Вертикальные колебания уровня воды во время приливов и отливов сопряжены с горизонтальными перемещениями водных масс по отношению к берегу. Эти процессы осложняются ветровым нагоном, речным стоком и другими факторами. Горизонтальные перемещения водных масс в береговой зоне называют приливными (или приливо-отливными) течениями, тогда как вертикальные колебания уровня воды – приливами и отливами. Все явления, связанные с приливами и отливами, характеризуются периодичностью. Приливные течения периодически меняют направление на противоположное, тогда как океанические течения, движущиеся непрерывно и однонаправленно, обусловлены общей циркуляцией атмосферы и охватывают большие пространства открытого океана (См. также ОКЕАН).
В переходные интервалы от прилива к отливу и наоборот трудно установить тренд приливного течения. В это время (не всегда совпадающее со стоянием прилива или отлива) вода, как говорят, «застаивается».
Приливы и отливы циклически чередуются в соответствии с изменяющейся астрономической, гидрологической и метеорологической обстановкой. Последовательность фаз приливов и отливов определяется двумя максимумами и двумя минимумами в суточном ходе.
Объяснение происхождения приливообразующих сил. Хотя Солнце играет существенную роль в приливо-отливных процессах, решающим фактором их развития служит сила гравитационного притяжения Луны. Степень воздействия приливообразующих сил на каждую частицу воды, независимо от ее местоположения на земной поверхности, определяется законом всемирного тяготения Ньютона. Этот закон гласит, что две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению масс обеих частиц и обратно пропорциональной квадрату расстояния между ними. При этом подразумевается, что чем более масса тел, тем больше возникающая между ними сила взаимного притяжения (при одинаковой плотности меньшее тело создаст меньшее притяжение, чем большее). Закон также означает, что чем больше расстояние между двумя телами, тем меньше между ними притяжение. Поскольку эта сила обратно пропорциональна квадрату расстояния между двумя телами, в определении величины приливообразующей силы фактор расстояния играет значительно бóльшую роль, чем массы тел.
Гравитационное притяжение Земли, действующее на Луну и удерживающее ее на околоземной орбите, противоположно силе притяжения Земли Луной, которая стремится сместить Землю по направлению к Луне и «приподнимает» все объекты, находящиеся на Земле, в направлении Луны. Точка земной поверхности, расположенная непосредственно под Луной, удалена всего на 6400 км от центра Земли и в среднем на 386 063 км от центра Луны. Кроме того, масса Земли в 81,3 раза больше массы Луны. Таким образом, в этой точке земной поверхности притяжение Земли, действующее на любой объект, приблизительно в 300 тыс. раз больше притяжения Луны. Распространено представление, что вода на Земле, находящаяся прямо под Луной, поднимается в направлении Луны, что приводит к оттоку воды из других мест земной поверхности, однако, поскольку притяжение Луны столь мало в сравнении с притяжением Земли, его было бы недостаточно, чтобы поднять столь огромный вес.
Тем не менее океаны, моря и большие озера на Земле, будучи крупными жидкими телами, свободны перемещаться под действием силы бокового смещения, и любая слабая тенденция к сдвигу по горизонтали приводит их в движение. Все воды, не находящиеся непосредственно под Луной, подчиняются действию составляющей силы притяжения Луны, направленной тангенциально (касательно) к земной поверхности, как и ее составляющей, направленной вовне, и подвергаются горизонтальному смещению относительно твердой земной коры. В результате возникает течение воды из прилегающих районов земной поверхности по направлению к месту, находящемуся под Луной. Результирующее скопление воды в точке под Луной образует там прилив. Собственно приливная волна в открытом океане имеет высоту лишь 30–60 см, но она значительно увеличивается при подходе к берегам материков или островов.
За счет перемещения воды из соседних районов в сторону точки под Луной происходят соответствующие отливы воды в двух других точках, удаленных от нее на расстояние, равное четверти окружности Земли. Интересно отметить, что понижение уровня океана в этих двух точках сопровождается повышением уровня моря не только на стороне Земли, обращенной к Луне, но и на противоположной стороне. Этот факт тоже объясняется законом Ньютона. Два или несколько объектов, расположенные на разных расстояниях от одного и того же источника тяготения и подвергающиеся, следовательно, ускорению силы тяжести разной величины, перемещаются относительно друг друга, поскольку ближайший к центру тяготения объект сильнее всего притягивается к нему. Вода в подлунной точке испытывает более сильное притяжение к Луне, чем Земля под ней, но Земля, в свою очередь, сильнее притягивается к Луне, чем вода, на противоположной стороне планеты. Таким образом, возникает приливная волна, которая на обращенной к Луне стороне Земли называется прямой, а на противоположной – обратной. Первая из них всего на 5% выше второй.
Благодаря вращению Луны по орбите вокруг Земли между двумя последовательными приливами или двумя отливами в данном месте проходит примерно 12 ч 25 мин. Интервал между кульминациями последовательных прилива и отлива ок. 6 ч 12 мин. Период продолжительностью 24 ч 50 мин между двумя последовательными приливами называется приливными (или лунными) сутками.
Неравенства величин прилива. Приливо-отливные процессы очень сложны, поэтому, чтобы разобраться в них, необходимо принимать во внимание многие факторы. В любом случае главные особенности будут определяться: 1) стадией развития прилива относительно прохождения Луны; 2) амплитудой прилива и 3) типом приливных колебаний, или формой кривой хода уровня воды. Многочисленные вариации в направлении и величине приливообразующих сил порождают разницу в величинах утренних и вечерних приливов в данном порту, а также между одними и теми же приливами в разных портах. Эти различия называются неравенствами величин прилива.
Полусуточный эффект. Обычно в течение суток благодаря основной приливообразующей силе – вращению Земли вокруг своей оси – образуются два полных приливных цикла. Если смотреть со стороны Северного полюса эклиптики, то очевидно, что Луна вращается вокруг Земли в том же направлении, в каком Земля вращается вокруг своей оси, – против часовой стрелки. При каждом следующем обороте данная точка земной поверхности вновь занимает позицию непосредственно под Луной несколько позже, чем при предыдущем обороте. По этой причине и приливы и отливы каждый день запаздывают приблизительно на 50 мин. Эта величина называется лунным запаздыванием.
Полумесячное неравенство. Этому основному типу вариаций присуща периодичность примерно в 143/4 суток, что связано с вращением Луны вокруг Земли и прохождением ею последовательных фаз, в частности сизигий (новолуний и полнолуний), т.е. моментов, когда Солнце, Земля и Луна располагаются на одной прямой. До сих пор мы касались только приливообразующего воздействия Луны. Гравитационное поле Солнца также действует на приливы, однако, хотя масса Солнца намного больше массы Луны, расстояние от Земли до Солнца настолько превосходит расстояние до Луны, что приливообразующая сила Солнца составляет менее половины приливообразующей силы Луны. Однако, когда Солнце и Луна находятся на одной прямой как по одну сторону от Земли, так и по разные (в новолуние или полнолуние), силы их притяжения складываются, действуя вдоль одной оси, и происходит наложение солнечного прилива на лунный. Подобным же образом притяжение Солнца усиливает отлив, вызванный воздействием Луны. В результате приливы становятся выше, а отливы ниже, чем если бы они были вызваны только притяжением Луны. Такие приливы называются сизигийными.
Когда векторы силы притяжения Солнца и Луны взаимно перпендикулярны (во время квадратур, т.е. когда Луна находится в первой или последней четверти), их приливообразующие силы противодействуют, поскольку прилив, вызванный притяжением Солнца, накладывается на отлив, вызванный Луной. В таких условиях приливы не столь высоки, а отливы – не столь низки, как если бы они были обусловлены только силой притяжения Луны. Такие промежуточные приливы и отливы называются квадратурными. Диапазон отметок полных и малых вод в этом случае сокращается приблизительно в три раза по сравнению с сизигийным приливом. В Атлантическом океане как сизигийные, так и квадратурные приливы обычно запаздывают на сутки по сравнению с соответствующей фазой Луны. В Тихом океане такое запаздывание составляет лишь 5 ч. В портах Нью-Йорк и Сан-Франциско и в Мексиканском заливе сизигийные приливы на 40% выше квадратурных.
Лунное параллактическое неравенство. Период колебаний высот приливов, возникающий за счет лунного параллакса, составляет 271/2 суток. Причина этого неравенства состоит в изменении расстояния Луны от Земли в процессе вращения последней. Из-за эллиптической формы лунной орбиты приливообразующая сила Луны в перигее на 40% выше, чем в апогее. Этот расчет справедлив для порта Нью-Йорк, где эффект пребывания Луны в апогее или перигее обычно запаздывает примерно на 11/2 суток относительно соответствующей фазы Луны. Для порта Сан-Франциско разница в высотах приливов, обусловленная нахождением Луны в перигее или апогее, составляет только 32%, и они следуют за соответствующими фазами Луны с запаздыванием на двое суток.
Суточное неравенство. Период этого неравенства составляет 24 ч 50 мин. Причины его возникновения – вращение Земли вокруг своей оси и изменение склонения Луны. Когда Луна находится вблизи небесного экватора, два прилива в данные сутки (а также два отлива) слабо различаются, и высоты утренних и вечерних полных и малых вод весьма близки. Однако с увеличением северного или южного склонения Луны утренние и вечерние приливы одного и того же типа различаются по высоте, и, когда Луна достигает наибольшего северного или южного склонения, эта разница максимальна. Известны также тропические приливы, называемые так из-за того, что Луна находится почти над Северным или Южным тропиками.
Суточное неравенство существенно не влияет на высоты двух последовательных отливов в Атлантическом океане, и даже его воздействие на высоты приливов мало по сравнению с общей амплитудой колебаний. Однако в Тихом океане суточная неравномерность проявляется в уровнях отливов втрое сильнее, чем в уровнях приливов.
Полугодовое неравенство. Его причиной является обращение Земли вокруг Солнца и соответствующее изменение склонения Солнца. Дважды в год в течение нескольких суток во время равноденствий Солнце находится близ небесного экватора, т.е. его склонение близко к 0°. Луна также располагается вблизи небесного экватора приблизительно в течение суток каждые полмесяца. Таким образом, во время равноденствий существуют периоды, когда склонения и Солнца и Луны приблизительно равны 0°. Суммарный приливообразующий эффект притяжения этих двух тел в такие моменты наиболее заметно проявляется в районах, расположенных вблизи земного экватора. Если в то же самое время Луна находится в фазе новолуния или полнолуния, возникают т.н. равноденственные сизигийные приливы.
Солнечное параллактическое неравенство. Период проявления этого неравенства составляет один год. Его причиной служит изменение расстояния от Земли до Солнца в процессе орбитального движения Земли. Один раз за каждый оборот вокруг Земли Луна находится на кратчайшем от нее расстоянии в перигее. Один раз в год, примерно 2 января, Земля, двигаясь по своей орбите, также достигает точки наибольшего приближения к Солнцу (перигелия). Когда эти два момента наибольшего сближения совпадают, вызывая наибольшую суммарную приливообразующую силу, можно ожидать более высоких уровней приливов и более низких уровней отливов. Подобно этому, если прохождение афелия совпадает с апогеем, возникают менее высокие приливы и менее глубокие отливы.
Методы наблюдений и прогноз высоты приливов. Измерение уровней приливов осуществляется при помощи устройств различных типов.
Футшток – это обычная рейка с нанесенной на нее шкалой в сантиметрах, прикрепляемая вертикально к пирсу или к опоре, погруженной в воду так, что нулевая отметка находится ниже наиболее низкого уровня отлива. Изменения уровня считывают непосредственно с этой шкалы.
Поплавковый футшток. Такие футштоки используются там, где постоянное волнение или мелководная зыбь затрудняют определение уровня по неподвижной шкале. Внутри защитного колодца (полой камеры или трубы), вертикально установленного на морском дне, помещается поплавок, который соединен с указателем, закрепленным на неподвижной шкале, или пером самописца. Вода проникает в колодец сквозь небольшое отверстие, расположенное значительно ниже минимального уровня моря. Его приливные изменения через поплавок передаются на измерительные приборы.
Гидростатический самописец уровня моря. На определенной глубине размещается блок резиновых мешков. По мере изменения высоты прилива (слоя воды) меняется гидростатическое давление, которое фиксируется измерительными приборами. Автоматические регистрирующие устройства (мареографы) также могут применяться для получения непрерывной записи приливо-отливных колебаний в любой точке.
Таблицы приливов. При составлении таблиц приливов используются два основных метода: гармонический и негармонический. Негармонический метод всецело базируется на результатах наблюдений. Кроме того, привлекаются характеристики портовых акваторий и некоторые основные астрономические данные (часовой угол Луны, время ее прохождения через небесный меридиан, фазы, склонения и параллакс). После внесения поправок на перечисленные факторы расчет момента наступления и уровня прилива для любого порта является чисто математической процедурой.
Гармонический метод является отчасти аналитическим, а отчасти основан на данных наблюдений за высотами приливов, проводившихся в течение по меньшей мере одного лунного месяца. Для подтверждения этого типа прогнозов для каждого порта необходимы длительные ряды наблюдений, поскольку за счет таких физических явлений, как инерция и трение, а также сложной конфигурации берегов акватории и особенностей рельефа дна возникают искажения. Поскольку приливо-отливным процессам присуща периодичность, к ним применяется анализ гармонических колебаний. Наблюдаемый прилив рассматривается как результат сложения серии простых составляющих волн прилива, каждая из которых вызвана одной из приливообразующих сил или одним из факторов. Для полного решения используется 37 таких простых составляющих, хотя в некоторых случаях дополнительные компоненты сверх 20 основных пренебрежимо малы. Одновременная подстановка 37 констант в уравнение и собственно его решение осуществляется на компьютере.
Приливы на реках и течения. Взаимодействие приливов и речных течений хорошо заметно там, где крупные реки впадают в океан. Высота приливов в бухтах, устьях рек и эстуариях может существенно возрастать в результате увеличения стока в маргинальных потоках, особенно во время половодий. Вместе с тем океанические приливы проникают далеко вверх по рекам в виде приливных течений. Например, на р.Гудзон приливная волна заходит на расстояние 210 км от устья. Приливные течения обычно распространяются вверх по реке до труднопреодолимых водопадов или порогов. Во время приливов течения в реках отличаются бóльшими скоростями, чем во время отливов. Максимальные скорости приливных течений достигают 22 км/ч.
Бор. Когда вода, приходящая в движение под воздействием прилива большой высоты, ограничена в своем перемещении узким руслом, образуется довольно крутая волна, которая единым фронтом перемещается вверх по потоку. Это явление называется приливной волной, или бором. Такие волны наблюдаются на реках гораздо выше устьев, где сочетание силы трения и течения реки в наибольшей степени препятствует распространению прилива. Известно явление формирования бора в заливе Фанди в Канаде. Около Монктона (пров. Нью-Брансуик) р.Птикодиак впадает в бухту Фанди, образуя маргинальный поток. В малую воду его ширина 150 м, и он пересекает полосу осушки. Во время прилива стена воды протяженностью 750 м и высотой 60–90 см шипящим и бурлящим вихрем устремляется вверх по реке. Самый большой из известных боров высотой 4,5 м формируется на р.Фучуньцзян, впадающей в залив Ханьчжоу. См. также БОР.
Реверсивный водопад (меняющий направление на противоположное) – это еще одно явление, связанное с приливами на реках. Типичный пример – водопад на р.Сент-Джон (пров. Нью-Брансуик, Канада). Здесь по узкому ущелью вода во время прилива проникает в котловину, расположенную выше уровня малой воды, однако несколько ниже уровня полной воды в этой же теснине. Таким образом, возникает преграда, перетекая через которую вода образует водопад. Во время отлива сток воды устремляется вниз по течению через суженный проход и, преодолевая подводный уступ, образует обычный водопад. Во время прилива проникшая в ущелье крутая волна обрушивается водопадом в вышележащую котловину. Попятное течение продолжается до тех пор, пока уровни воды по обе стороны порога не сравняются и не начнется отлив. Затем опять восстанавливается водопад, обращенный вниз по течению. Средний перепад уровня воды в ущелье составляет ок. 2,7 м, однако при самых высоких приливах высота прямого водопада может превысить 4,8 м, а реверсивного – 3,7 м.
Наибольшие амплитуды приливов. Самый высокий в мире прилив формируется в условиях сильного течения в бухте Минас в заливе Фанди. Приливные колебания здесь характеризуются нормальным ходом с полусуточным периодом. Уровень воды во время прилива часто поднимается за шесть часов более чем на 12 м, а затем в течение последующих шести часов понижается на ту же величину. Когда воздействие сизигийного прилива, положение Луны в перигее и максимальное склонение Луны приходятся на одни сутки, уровень прилива может достигать 15 м. Такая исключительно большая амплитуда приливо-отливных колебаний отчасти обусловлена воронкообразной формой залива Фанди, где глубины уменьшаются, а берега сближаются по направлению к вершине залива.
Ветер и погода. Ветер оказывает существенное влияние на приливо-отливные явления. Ветер с моря нагоняет воду в сторону берега, высота прилива увеличивается сверх обычной, и при отливе уровень воды тоже превосходит средний. Напротив, при ветре, дующем с суши, вода сгоняется от берега, и уровень моря понижается.
За счет повышения атмосферного давления над обширной акваторией происходит понижение уровня воды, так как добавляется наложенный вес атмосферы. Когда атмосферное давление возрастает на 25 мм рт. ст., уровень воды понижается приблизительно на 33 см. Понижение атмосферного давления вызывает соответствующее повышение уровня воды. Следовательно, резкое падение атмосферного давления в сочетании с ветром ураганной силы способно вызвать заметный подъем уровня воды. Подобные волны, хотя и называются приливными, на самом деле не связаны с воздействием приливообразующих сил и не обладают периодичностью, характерной для приливо-отливных явлений. Формирование упомянутых волн может быть сопряжено либо с ветрами ураганной силы, либо с подводными землетрясениями (в последнем случае они называются сейсмическими морскими волнами, или цунами).
Использование энергии приливов. Разработаны четыре метода использования энергии приливов, но наиболее практичным из них является создание системы приливных бассейнов. При этом колебания уровня воды, связанные с приливо-отливными явлениями, используются в системе шлюзов так, что постоянно поддерживается перепад уровней, позволяющий получать энергию. Мощность приливных электростанций непосредственно зависит от площади бассейнов-ловушек и потенциального перепада уровней. Последний фактор, в свою очередь, является функцией амплитуды приливо-отливных колебаний. Достижимый перепад уровней, безусловно, наиболее важен для производства электроэнергии, хотя стоимость сооружений зависит от площади бассейнов. В настоящее время крупные приливные электростанции действуют в России на Кольском п-ове и в Приморье, во Франции в эстуарии р.Ранс, в Китае близ Шанхая, а также в других районах земного шара.
СВЕДЕНИЯ О ПРИЛИВАХ В НЕКОТОРЫХ ПОРТАХ МИРА
Порт :: Интервал между приливами :: Средняя высота прилива, м :: Высота сизигийного прилива, м
:: ч :: мин :: ::
м. Моррис-Джесеп, Гренландия, Дания:: 10:: 49:: 0,12:: 0,18
Рейкьявик, Исландия:: 4:: 50:: 2,77:: 3,66
р. Коксоак, Гудзонов пролив, Канада:: 8:: 56:: 7,65:: 10,19
Сент-Джонс, Ньюфаундленд, Канада:: 7:: 12:: 0,76:: 1,04
Барнтко, залив Фанди, Канада:: 0:: 09:: 12,02:: 13,51
Портленд, шт. Мэн, США:: 11:: 10:: 2,71:: 3,11
Бостон, шт. Массачусетс, США:: 11:: 16:: 2,90:: 3,35
Нью-Йорк, шт. Нью-Йорк, США:: 8:: 15:: 1,34:: 1,62
Балтимор, шт. Мэриленд, США:: 6:: 29:: 0,33:: 0,40
Майами-Бич, шт. Флорида, США:: 7:: 37:: 0,76:: 0,91
Галвестон, шт. Техас, США:: 5:: 07:: 0,30:: 0,43*
о. Марака, Бразилия:: 6:: 00:: 6,98:: 9,15
Рио-де-Жанейро, Бразилия:: 2:: 23:: 0,76:: 1,07
Каллао, Перу:: 5:: 36:: 0,55:: 0,73
Бальбоа, Панама:: 3:: 05:: 3,84:: 5,00
Сан-Франциско, шт. Калифорния, США:: 11:: 40:: 1,19:: 1,74*
Сиэтл, шт.Вашингтон, США:: 4:: 29:: 2,32:: 3,45*
Нанаймо, пров.Британская Колумбия, Канада:: 5:: 00:: … :: 3,42*
Ситка, шт.Аляска, США:: 0:: 07:: 2,35:: 3,02*
Санрайз, залив Кука, шт. Аляска, США:: 6:: 15:: 9,24:: 10,16
Гонолулу, шт. Гавайи, США:: 3:: 41:: 0,37:: 0,58*
Папеэте, о. Таити, Французская Полинезия:: … :: … :: 0,24:: 0,33
Дарвин, Австралия:: 5:: 00:: 4,39:: 6,19
Мельбурн, Австралия:: 2:: 10:: 0,52:: 0,58
Рангун, Мьянма:: 4:: 26:: 3,90:: 4,97
Занзибар, Танзания:: 3:: 28:: 2,47:: 3,63
Кейптаун, ЮАР:: 2:: 55:: 0,98:: 1,31
Гибралтар, влад. Великобритании:: 1:: 27:: 0,70:: 0,94
Гранвиль,Франция:: 5:: 45:: 8,69:: 12,26
Лит, Великобритания:: 2:: 08:: 3,72:: 4,91
Лондон, Великобритания:: 1:: 18:: 5,67:: 6,56
Дувр, Великобритания:: 11:: 06:: 4,42:: 5,67
Эйвонмут, Великобритания:: 6:: 39:: 9,48:: 12,32
Рамси, о. Мэн, Великобритания:: 10:: 55:: 5,25:: 7,17
Осло, Норвегия:: 5:: 26:: 0,30:: 0,33
Гамбург, Германия:: 4:: 40:: 2,23:: 2,38
* Суточная амплитуда прилива.
ЛИТЕРАТУРА
Шулейкин В.В. Физика моря. М., 1968
Гарвей Дж. Атмосфера и океан. М., 1982
Дрейк Ч., Имбри Дж., Кнаус Дж., Турекиан К. Океан сам по себе и для нас. М., 1982

Энциклопедия Кругосвет. 2008.

) - высота достигала 2 метров, ныне сильно ослаблен дамбой

  • залив Кука , один из рукавов (Аляска) - высота до 2 метров, скорость 20 км/ч
  • Лунный интервал приливов - это период времени с момента прохождения Луны через точку зенита над Вашей местностью до момента достижения наивысшего значения уровня воды во время прилива

    Хотя для земного шара величина силы тяготения Солнца почти в 200 раз больше, чем силы тяготения Луны, прили́вные силы , порождаемые Луной, почти вдвое больше порождаемых Солнцем. Это происходит из-за того, что приливные силы зависят не от величины гравитационного поля, а от степени его неоднородности. При увеличении расстояния от источника поля неоднородность уменьшается быстрее, чем величина самого поля. Поскольку Солнце почти в 400 раз дальше от Земли, чем Луна, то приливные силы, вызываемые солнечным притяжением, оказываются слабее.

    Также одной из причин возникновения приливов и отливов является суточное (собственное) вращение Земли . Массы воды мирового океана, имеющие форму эллипсоида, большая ось которого не совпадает с осью вращения Земли, участвуют в её вращении вокруг этой оси. Это ведёт к тому, что в системе отсчёта , связанной с земной поверхностью, по океану бегут по взаимно противоположным сторонам земного шара две волны, приводящие в каждой точке океанского побережья к периодическим, два раза в сутки повторяющимся явлениям отлива, чередующихся с приливами.

    Таким образом, ключевыми моментами в объяснении приливно-отливных явлений являются:

    • суточное вращение земного шара;
    • деформация покрывающей земную поверхность водной оболочки, превращающая последнюю в эллипсоид .

    Отсутствие одного из этих факторов исключает возможность появления приливов и отливов.

    При объяснении причин приливов внимание обычно обращается лишь на второй из этих факторов. Но расхожее объяснение рассматриваемого явления только действием приливных сил неполно.

    Приливная волна, имеющая форму упомянутого выше эллипсоида, представляет собой суперпозицию двух «двугорбых» волн, образовавшихся в результате гравитационного взаимодействия планетной пары Земля - Луна и гравитационного взаимодействия этой пары с центральным светилом - Солнцем с одной стороны. Кроме того, фактором, определяющим образование этой волны, выступают силы инерции , имеющие место при обращении небесных тел вокруг общих для них центров масс .

    Ежегодно повторяющийся приливно-отливной цикл остаётся неизменным вследствие точной компенсации сил притяжения между Солнцем и центром масс планетной пары и силами инерции, приложенными к этому центру.

    Поскольку положение Луны и Солнца по отношению к Земле периодически меняется, меняется и интенсивность результирующих приливно-отливных явлений.

    Энциклопедичный YouTube

      1 / 1

      Приливы и отливы

    Субтитры

    История

    Отливы играли заметную роль в снабжении прибрежного населения морепродуктами, позволяя собирать на обнажившемся морском дне годную для еды пищу.

    Терминология

    Максимальный уровень поверхности воды во время прилива называется полной водой , а минимальный во время отлива - малой водой . В океане, где дно ровное, а суша далеко, полная вода проявляется как два «вздутия» водной поверхности: одно из них находится со стороны Луны, а другое - в противоположном конце земного шара. Также могут присутствовать ещё два меньших по размеру вздутия со стороны, направленной к Солнцу, и противоположной ему. Объяснение этому эффекту можно найти ниже, в разделе физика прилива .

    Так как Луна и Солнце перемещаются относительно Земли, вместе с ними перемещаются и водные горбы, образуя прили́вные волны и прили́вные течения . В открытом море приливные течения имеют вращательный характер, а вблизи берегов и в узких заливах и проливах - возвратно-поступательный.

    Если бы вся Земля была покрыта водой, мы бы наблюдали два регулярных прилива и отлива ежедневно. Но так как беспрепятственному распространению приливных волн мешают участки суши: острова и континенты , а также из-за действия силы Кориолиса на движущуюся воду, вместо двух приливных волн наблюдается множество маленьких волн, которые медленно (в большинстве случаев с периодом 12 ч 25,2 мин) обегают вокруг точки, называющейся амфидромической , в которой амплитуда прилива равна нулю. Доминирующая компонента прилива (лунный прилив М2) образует на поверхности Мирового океана около десятка амфидромических точек с движением волны по часовой стрелке и примерно столько же - против часовой (см. карту). Всё это делает невозможным предсказание времени прилива только на основе положений Луны и Солнца относительно Земли. Вместо этого используют «ежегодник приливов» - справочное пособие для вычисления времени наступления приливов и их высоты в различных пунктах земного шара. Также используются таблицы приливов, с данными о моментах и высотах малых и полных вод, вычисленными на год вперёд для основных прили́вных по́ртов .

    Если соединить на карте точки с одинаковыми фазами прилива, мы получим так называемые котидальные линии , радиально расходящиеся из амфидромической точки. Обычно котидальные линии характеризуют положение гребня приливной волны для каждого часа. Фактически котидальные линии отражают скорость распространения приливной волны за 1 час. Карты, на которых представлены линии равных амплитуд и фаз приливных волн, называются котидальными картами .

    Высота прилива - разница между высшим уровнем воды при приливе (полная вода) и низшим её уровнем при отливе (малая вода). Высота прилива - величина непостоянная, однако средний её показатель приводится при характеристике каждого участка побережья.

    В зависимости от взаимного расположения Луны и Солнца малая и большая приливные волны могут усиливать друг друга. Для таких приливов исторически сложились специальные названия:

    • Квадратурный прилив - наименьший прилив, когда приливообразующие силы Луны и Солнца действуют под прямым углом друг к другу (такое положение светил называется квадратурой).
    • Сизигийный прилив - наибольший прилив, когда приливообразующие силы Луны и Солнца действуют вдоль одного направления (такое положение светил называется сизигией).

    Чем меньше или больше прилив, тем меньше или, соответственно, больше отлив.

    Самые высокие приливы в мире

    Высочайшие на Земле приливы (15,6-18 м) наблюдаются в бухте Фанди , которая находится на восточном побережье Канады между Нью-Брансуиком и Новой Шотландией. Примерно такие же приливы и в заливе Унгава на севере Квебека .

    На Европейском континенте самые высокие приливы (до 13,5 м) наблюдаются в Бретани у города Сен-Мало . Здесь приливная волна фокусируется береговой чертой полуостровов Корнуолл (Англия) и Котантен (Франция).

    Физика прилива

    Современная формулировка

    Применительно к планете Земля причиной приливов является нахождение планеты в гравитационном поле, создаваемом Солнцем и Луной. Поскольку создаваемые ими эффекты независимы, то воздействие этих небесных тел на Землю можно рассматривать по отдельности. В таком случае для каждой пары тел можно считать, что каждое из них обращается вокруг общего центра гравитации. Для пары Земля - Солнце этот центр находится в глубине Солнца на расстоянии 451 км от его центра. Для пары Земля - Луна он находится в глубине Земли на расстоянии 2 ⁄ 3 её радиуса от центра.

    Каждое из этих тел испытывает действие приливных сил, источником которых являются сила гравитации и внутренние силы, обеспечивающие целостность небесного тела, в роли которых выступает сила собственного притяжения, далее называемая самогравитацией. Наиболее наглядно возникновение приливных сил прослеживается на примере системы Земля - Солнце.

    Приливная сила представляет собой результат конкурирующего взаимодействия силы тяготения, направленной к центру гравитации и убывающей обратно пропорционально квадрату расстояния от него, и фиктивной центробежной силы инерции, обусловленной обращением небесного тела вокруг этого центра. Эти силы, будучи противоположными по направлению, совпадают по величине только в центре масс каждого из небесных тел. Благодаря действию внутренних сил Земля обращается вокруг центра Солнца как целое с постоянной угловой скоростью для каждого элемента составляющей её массы. Поэтому по мере удаления этого элемента массы от центра гравитации действующая на него центробежная сила растёт пропорционально квадрату расстояния.

    Более детальное распределение приливных сил в их проекции на плоскость, перпендикулярную плоскости эклиптики , приведены на рис. 1.

    Достигаемое в результате действия приливных сил воспроизводство изменений формы подвергаемого их действию тел может, в соответствии с ньютонианской парадигмой, быть достигнуто лишь в том случае, если эти силы полностью скомпенсированы иными силами, в число которых может входить и сила всемирного тяготения.

    В результате сложения этих сил и возникают симметрично по обе стороны земного шара приливные силы, направленные в разные стороны от него. Приливная сила, направленная к Солнцу, имеет гравитационную природу, а направленная от Солнца есть следствие фиктивной силы инерции.

    Эти силы крайне слабы и не идут ни в какое сравнение с силами самогравитации (создаваемое ими ускорение в 10 миллионов раз меньше ускорения свободного падения ). Однако они вызывают сдвиг частиц воды Мирового океана (сопротивление сдвигу в воде при малых скоростях движения практически равно нулю, в то время как сжатию - чрезвычайно велико), до тех пор, пока касательная к поверхности воды не станет перпендикулярной результирующей силе.

    В итоге на поверхности Мирового океана возникает волна, занимающая постоянное положение в системах взаимно тяготеющих тел, но бегущая по поверхности океана совместно с суточным движением его дна и берегов. Таким образом (в пренебрежении океаническими течениями) каждая частица воды дважды совершает в течение суток колебательное движение вверх-вниз.

    Горизонтальное движение воды наблюдается лишь у берегов как следствие подъёма её уровня. Скорость движения тем больше, чем более полого расположено морское дно.

    Приливообразующий потенциал

    (концепция акад. Шулейкина )

    Пренебрегая размером, строением и формой Луны, запишем удельную силу притяжения пробного тела, находящегося на Земле. Пусть r ′ {\displaystyle \mathbf {r} "} - радиус-вектор, направленный от пробного тела в сторону Луны, r ′ {\displaystyle r"} - длина этого вектора. В этом случае сила притяжения этого тела Луной будет равна

    F = G M L r ′ 3 r ′ {\displaystyle \mathbf {F} ={\frac {G{{M}_{L}}}{r{{"}^{3}}}}\mathbf {r} "} (1)

    где G M L {\displaystyle G{{M}_{L}}} - селенометрическая гравитационная постоянная. Пробное тело поместим в точку P {\displaystyle P} . Сила притяжения пробного тела, помещённого в центр масс Земли будет равна

    F 0 = G M L r 3 r {\displaystyle {{\mathbf {F} }_{0}}={\frac {G{{M}_{L}}}{{r}^{3}}}\mathbf {r} } (2)

    Здесь под r {\displaystyle \mathbf {r} } и r {\displaystyle r} понимаются радиус-вектор, соединяющий центры масс Земли и Луны, и их абсолютные величины. Приливной силой мы будем называть разность этих двух сил тяготения

    F f l = F − F 0 {\displaystyle {{\mathbf {F} }_{fl}}=\mathbf {F} -{{\mathbf {F} }_{0}}} (3)

    В формулах (1) и (2) Луна считается шаром со сферически-симметричным распределением масс. Силовая функция притяжения пробного тела Луной ничем не отличается от силовой функции притяжения шара и равна G M L ╱ r ′ {\displaystyle {}^{G{{M}_{L}}}\!\!\diagup \!\!{}_{r"}\;} Вторая сила приложена к центру масс Земли и является строго постоянной величиной. Для получения силовой функции для этой силы мы введём временную систему координат. Ось O x {\displaystyle Ox} проведём из центра Земли и направим в сторону Луны. Направления двух других осей оставим произвольными. Тогда силовая функция силы F 0 {\displaystyle {{\mathbf {F} }_{0}}} будет равна G M L r 2 x + const {\displaystyle {\frac {G{{M}_{L}}}{{r}^{2}}}x+\operatorname {const} } . Приливообразующий потенциал будет равен разности этих двух силовых функций. Обозначим его δ W {\displaystyle \delta W} , получим δ W = G M L r ′ − G M L r 2 x − const {\displaystyle \delta W={\frac {G{{M}_{L}}}{r"}}-{\frac {G{{M}_{L}}}{{r}^{2}}}x-\operatorname {const} } Постоянную const {\displaystyle \operatorname {const} } определим из условия нормировки, согласно которому приливообразующий потенциал в центре Земли равен нулю. В центре Земли x = 0 {\displaystyle x=0} , r ′ = r {\displaystyle r"=r} Отсюда следует, что G M L r = const {\displaystyle {\frac {G{{M}_{L}}}{r}}=\operatorname {const} } . Следовательно, мы получаем окончательную формулу приливообразующего потенциала в виде

    G M L r ′ − G M L r 2 x − G M L r {\displaystyle {\frac {G{{M}_{L}}}{r"}}-{\frac {G{{M}_{L}}}{{r}^{2}}}x-{\frac {G{{M}_{L}}}{r}}} (4)

    Поскольку

    R ′ = (r − x) 2 + y 2 + z 2 {\displaystyle r"={\sqrt {{{\left(r-x\right)}^{2}}+{{y}^{2}}+{{z}^{2}}}}}

    1 r ′ = 1 r [ (1 − x r) 2 + y 2 + z 2 r 2 ] − 1 2 {\displaystyle {\frac {1}{r"}}={\frac {1}{r}}{{\left[{{\left(1-{\frac {x}{r}}\right)}^{2}}+{\frac {{{y}^{2}}+{{z}^{2}}}{{r}^{2}}}\right]}^{-{\frac {1}{2}}}}}

    При малых величинах x / r {\displaystyle {x}/{r}\;} , y / r {\displaystyle {y}/{r}\;} , z / r {\displaystyle {z}/{r}\;} , учитывая второй порядок малости, последнее выражение можно представить в следующем виде

    1 r ′ ≈ 1 r (1 + x r + 2 x 2 − y 2 − z 2 2 r 2) {\displaystyle {\frac {1}{r"}}\approx {\frac {1}{r}}\left(1+{\frac {x}{r}}+{\frac {2{{x}^{2}}-{{y}^{2}}-{{z}^{2}}}{2{{r}^{2}}}}\right)} (5)

    Подставив (5) в (4), получим

    δ W = G M L 2 x 2 − y 2 − z 2 2 r 3 {\displaystyle \delta W=G{{M}_{L}}{\frac {2{{x}^{2}}-{{y}^{2}}-{{z}^{2}}}{2{{r}^{3}}}}} (6)

    Деформация поверхности планеты под действием приливов и отливов

    Возмущающее воздействие приливного потенциала деформирует уровненную поверхность планеты. Оценим это воздействие, считая, что Земля представляет собой шар со сферически-симметричным распределением массы. Невозмущённый гравитационный потенциал Земли на поверхности будет равен G M R {\displaystyle {\frac {GM}{R}}} . Для точки P {\displaystyle P} . , находящейся на расстоянии ρ {\displaystyle \rho } от центра сферы, гравитационный потенциал Земли равен G M ρ {\displaystyle {\frac {GM}{\rho }}} . Сократив на гравитационную постоянную, получим 1 ρ + M L M ⋅ 2 x 2 − y 2 − z 2 2 r 3 = 1 R {\displaystyle {\frac {1}{\rho }}+{\frac {{M}_{L}}{M}}\cdot {\frac {2{{x}^{2}}-{{y}^{2}}-{{z}^{2}}}{2{{r}^{3}}}}={\frac {1}{R}}} . Здесь переменными величинами являются x , y , z {\displaystyle x,y,z} и ρ {\displaystyle \rho } . Обозначим отношение масс гравитирующего тела к массе планеты греческой буквой μ {\displaystyle \mu } и решим полученное выражение относительно ρ {\displaystyle \rho } :

    ρ = R (1 − μ R r ⋅ 2 x 2 − y 2 − z 2 2 r 2) − 1 ≈ R (1 + μ R r ⋅ 2 x 2 − y 2 − z 2 2 r 2) {\displaystyle \rho =R{{\left(1-\mu {\frac {R}{r}}\cdot {\frac {2{{x}^{2}}-{{y}^{2}}-{{z}^{2}}}{2{{r}^{2}}}}\right)}^{-1}}\approx R\left(1+\mu {\frac {R}{r}}\cdot {\frac {2{{x}^{2}}-{{y}^{2}}-{{z}^{2}}}{2{{r}^{2}}}}\right)}

    Так как ρ 2 = x 2 + y 2 + z 2 {\displaystyle {{\rho }^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}} с той же степенью точности получим

    X 2 R 2 (1 − 2 μ R 3 r 3) + y 2 + z 2 R 2 (1 + μ R 3 r 3) = 1 {\displaystyle {\frac {{x}^{2}}{{R}^{2}}}\left(1-2\mu {\frac {{R}^{3}}{{r}^{3}}}\right)+{\frac {{{y}^{2}}+{{z}^{2}}}{{R}^{2}}}\left(1+\mu {\frac {{R}^{3}}{{r}^{3}}}\right)=1}

    Учитывая малость отношения R / r {\displaystyle {R}/{r}\;} последние выражения можно записать так

    X 2 R 2 (1 + 2 μ R 3 r 3) + y 2 + z 2 R 2 (1 − μ R 3 r 3) = 1 {\displaystyle {\frac {{x}^{2}}{{{R}^{2}}\left(1+2\mu {\frac {{R}^{3}}{{r}^{3}}}\right)}}+{\frac {{{y}^{2}}+{{z}^{2}}}{{{R}^{2}}\left(1-\mu {\frac {{R}^{3}}{{r}^{3}}}\right)}}=1}

    Мы получили, таким образом, уравнение двухосного эллипсоида, у которого ось вращения совпадает с осью O x {\displaystyle Ox} , т.е с прямой, соединяющей тяготеющее тело с центром Земли. Полуоси этого эллипсоида в первом приближении равны

    A = (1 + μ R 3 r 3) R , b = c = (1 − μ R 3 2 r 3) R {\displaystyle a=\left(1+\mu {\frac {{R}^{3}}{{r}^{3}}}\right)R,\,\,\,b=c=\left(1-\mu {\frac {{R}^{3}}{2{{r}^{3}}}}\right)R}

    Приведём в конце небольшую численную иллюстрацию данного эффекта. Вычислим приливные «горбы» на Земле, вызванные притяжением Луны и Солнца.

    Радиус Земли равен R = 6378 {\displaystyle R=6378} км, расстояние между центрами Земли и Луны с учётом нестабильности лунной орбиты r = 384 , 4 ⋅ 10 3 {\displaystyle r=384,4\cdot {{10}^{3}}} км, отношение массы Земли к массе Луны равно 81:1 ( μ = 0 , 012345679 {\displaystyle \mu =0,012345679} ). Очевидно, что при подстановке в формулу мы получим величину, примерно равную 36 см.

    Для вычисления приливного «горба», вызванного Солнцем, используем среднее расстояние от Земли до Солнца, равное r = 149 , 6 ⋅ 10 6 {\displaystyle r=149,6\cdot {{10}^{6}}} км, и отношение массы Солнца к массе Земли μ = 332982 {\displaystyle \mu =332982} . В этом случае получаем величину «горба» около 16 см.